The MRI Institute for Biomedical Research, Bingham Farms, MI, United States.
The MRI Institute for Biomedical Research, Bingham Farms, MI, United States; Magnetic Resonance Innovations, Bingham Farms, MI, United States.
Neuroimage. 2019 Sep;198:271-282. doi: 10.1016/j.neuroimage.2019.05.046. Epub 2019 May 20.
Detecting cerebral microbleeds (CMBs) is important in diagnosing a variety of diseases including dementia, stroke and traumatic brain injury. However, manual detection of CMBs can be time-consuming and prone to errors, whereas the current automatic algorithms for CMB detection are usually limited by large number of false positives. In this study, we present a two-stage CMB detection framework which contains a candidate detection stage based on a 3D fast radial symmetry transform of the composite images from Susceptibility Weighted Imaging (SWI), and a false positive reduction stage based on deep residual neural networks using both the SWI and the high-pass filtered phase images. While the SWI images provide exquisite sensitivity to the presence of blood products, the high-pass filtered phase images enable the differentiation of diamagnetic calcifications from paramagnetic microbleeds. The deep learning model was trained using 154 data sets, and the best models were selected using 25 validation data sets. Finally, the models were tested using 41 cases, including 13 hemodialysis cases, 9 traumatic brain injury cases, 9 stroke cases and 10 healthy controls. Using 3D SWI and high-pass filtered phase images as input, the best model led to a sensitivity of 95.8%, a precision of 70.9%, and 1.6 false positives per case. This model achieved similar performance to the most experienced human rater and outperformed recently reported CMB detection methods. This study demonstrates the potential of applying deep learning techniques to medical imaging for improving efficiency and accuracy in diagnosis.
检测脑微出血 (CMB) 对于诊断包括痴呆、中风和创伤性脑损伤在内的多种疾病非常重要。然而,手动检测 CMB 可能既耗时又容易出错,而当前用于 CMB 检测的自动算法通常受到大量假阳性的限制。在这项研究中,我们提出了一种两阶段的 CMB 检测框架,该框架包含一个基于复合图像的 3D 快速径向对称变换的候选检测阶段,以及一个基于深度残差神经网络的假阳性减少阶段,同时使用 SWI 和高通滤波相位图像。虽然 SWI 图像对血液产物的存在具有极高的灵敏度,但高通滤波相位图像可以区分顺磁性钙化与顺磁性微出血。该深度学习模型使用 154 个数据集进行训练,并使用 25 个验证数据集选择最佳模型。最后,使用 41 个病例进行模型测试,其中包括 13 个血液透析病例、9 个创伤性脑损伤病例、9 个中风病例和 10 个健康对照组。使用 3D SWI 和高通滤波相位图像作为输入,最佳模型的灵敏度为 95.8%,精度为 70.9%,每个病例的假阳性率为 1.6。该模型的性能与最有经验的人类评估者相当,优于最近报道的 CMB 检测方法。这项研究表明,深度学习技术在医学成像中的应用具有提高诊断效率和准确性的潜力。
Neuroimage Clin. 2016-7-2
Comput Med Imaging Graph. 2015-10-24
Comput Biol Med. 2022-12
IEEE Trans Med Imaging. 2016-2-11
J Image Graph. 2025
Aging Clin Exp Res. 2025-5-13
Bioengineering (Basel). 2024-9-30
Acta Neurochir (Wien). 2024-9-26
Quant Imaging Med Surg. 2024-3-15