文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于磁敏感加权成像和深度学习的脑微出血检测。

Cerebral microbleed detection using Susceptibility Weighted Imaging and deep learning.

机构信息

The MRI Institute for Biomedical Research, Bingham Farms, MI, United States.

The MRI Institute for Biomedical Research, Bingham Farms, MI, United States; Magnetic Resonance Innovations, Bingham Farms, MI, United States.

出版信息

Neuroimage. 2019 Sep;198:271-282. doi: 10.1016/j.neuroimage.2019.05.046. Epub 2019 May 20.


DOI:10.1016/j.neuroimage.2019.05.046
PMID:31121296
Abstract

Detecting cerebral microbleeds (CMBs) is important in diagnosing a variety of diseases including dementia, stroke and traumatic brain injury. However, manual detection of CMBs can be time-consuming and prone to errors, whereas the current automatic algorithms for CMB detection are usually limited by large number of false positives. In this study, we present a two-stage CMB detection framework which contains a candidate detection stage based on a 3D fast radial symmetry transform of the composite images from Susceptibility Weighted Imaging (SWI), and a false positive reduction stage based on deep residual neural networks using both the SWI and the high-pass filtered phase images. While the SWI images provide exquisite sensitivity to the presence of blood products, the high-pass filtered phase images enable the differentiation of diamagnetic calcifications from paramagnetic microbleeds. The deep learning model was trained using 154 data sets, and the best models were selected using 25 validation data sets. Finally, the models were tested using 41 cases, including 13 hemodialysis cases, 9 traumatic brain injury cases, 9 stroke cases and 10 healthy controls. Using 3D SWI and high-pass filtered phase images as input, the best model led to a sensitivity of 95.8%, a precision of 70.9%, and 1.6 false positives per case. This model achieved similar performance to the most experienced human rater and outperformed recently reported CMB detection methods. This study demonstrates the potential of applying deep learning techniques to medical imaging for improving efficiency and accuracy in diagnosis.

摘要

检测脑微出血 (CMB) 对于诊断包括痴呆、中风和创伤性脑损伤在内的多种疾病非常重要。然而,手动检测 CMB 可能既耗时又容易出错,而当前用于 CMB 检测的自动算法通常受到大量假阳性的限制。在这项研究中,我们提出了一种两阶段的 CMB 检测框架,该框架包含一个基于复合图像的 3D 快速径向对称变换的候选检测阶段,以及一个基于深度残差神经网络的假阳性减少阶段,同时使用 SWI 和高通滤波相位图像。虽然 SWI 图像对血液产物的存在具有极高的灵敏度,但高通滤波相位图像可以区分顺磁性钙化与顺磁性微出血。该深度学习模型使用 154 个数据集进行训练,并使用 25 个验证数据集选择最佳模型。最后,使用 41 个病例进行模型测试,其中包括 13 个血液透析病例、9 个创伤性脑损伤病例、9 个中风病例和 10 个健康对照组。使用 3D SWI 和高通滤波相位图像作为输入,最佳模型的灵敏度为 95.8%,精度为 70.9%,每个病例的假阳性率为 1.6。该模型的性能与最有经验的人类评估者相当,优于最近报道的 CMB 检测方法。这项研究表明,深度学习技术在医学成像中的应用具有提高诊断效率和准确性的潜力。

相似文献

[1]
Cerebral microbleed detection using Susceptibility Weighted Imaging and deep learning.

Neuroimage. 2019-5-20

[2]
Automated detection of cerebral microbleeds in MR images: A two-stage deep learning approach.

Neuroimage Clin. 2020

[3]
Deep-Learning-Based MRI Microbleeds Detection for Cerebral Small Vessel Disease on Quantitative Susceptibility Mapping.

J Magn Reson Imaging. 2024-9

[4]
Automated detection of cerebral microbleeds in patients with Traumatic Brain Injury.

Neuroimage Clin. 2016-7-2

[5]
Computer-aided detection of cerebral microbleeds in susceptibility-weighted imaging.

Comput Med Imaging Graph. 2015-10-24

[6]
Determination of detection sensitivity for cerebral microbleeds using susceptibility-weighted imaging.

NMR Biomed. 2017-4

[7]
CMB-HUNT: Automatic detection of cerebral microbleeds using a deep neural network.

Comput Biol Med. 2022-12

[8]
Automatic Detection of Cerebral Microbleeds From MR Images via 3D Convolutional Neural Networks.

IEEE Trans Med Imaging. 2016-2-11

[9]
Automated detection of cerebral microbleeds via segmentation in susceptibility-weighted images of patients with traumatic brain injury.

Neuroimage Clin. 2022

[10]
Susceptibility-weighted imaging is more reliable than T2*-weighted gradient-recalled echo MRI for detecting microbleeds.

Stroke. 2013-8-6

引用本文的文献

[1]
Automatic Detection and Classification of Cerebral Microbleeds Using 3D CNN.

J Image Graph. 2025

[2]
The associations between cerebral microhemorrhages and cognitive decline across Alzheimer's continuum.

Aging Clin Exp Res. 2025-5-13

[3]
Traumatic Brain Injury and Artificial Intelligence: Shaping the Future of Neurorehabilitation-A Review.

Life (Basel). 2025-3-7

[4]
SHIVA-CMB: a deep-learning-based robust cerebral microbleed segmentation tool trained on multi-source T2*GRE- and susceptibility-weighted MRI.

Sci Rep. 2024-12-28

[5]
A Novel Detection and Classification Framework for Diagnosing of Cerebral Microbleeds Using Transformer and Language.

Bioengineering (Basel). 2024-9-30

[6]
Automated Quantification of Cerebral Microbleeds in SWI: Association with Vascular Risk Factors, White Matter Hyperintensity Burden, and Cognitive Function.

AJNR Am J Neuroradiol. 2025-5-2

[7]
Real-world application of a 3D deep learning model for detecting and localizing cerebral microbleeds.

Acta Neurochir (Wien). 2024-9-26

[8]
Differentiating calcifications from cerebral microbleeds using quantitative susceptibility mapping.

Eur Radiol. 2025-4

[9]
Appropriate incorporation of susceptibility-weighted magnetic resonance imaging into routine imaging protocols for accurate diagnosis of traumatic brain injuries: a systematic review.

J Med Life. 2024-3

[10]
Automatic detection of cerebral microbleeds using susceptibility weighted imaging and artificial intelligence.

Quant Imaging Med Surg. 2024-3-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索