Suppr超能文献

使用 brainrender 可视化解剖配准数据。

Visualizing anatomically registered data with brainrender.

机构信息

UCL Sainsbury Wellcome Centre, London, United Kingdom.

Institute of Neuroscience, Technical University of Munich, Munich, Germany.

出版信息

Elife. 2021 Mar 19;10:e65751. doi: 10.7554/eLife.65751.

Abstract

Three-dimensional (3D) digital brain atlases and high-throughput brain-wide imaging techniques generate large multidimensional datasets that can be registered to a common reference frame. Generating insights from such datasets depends critically on visualization and interactive data exploration, but this a challenging task. Currently available software is dedicated to single atlases, model species or data types, and generating 3D renderings that merge anatomically registered data from diverse sources requires extensive development and programming skills. Here, we present brainrender: an open-source Python package for interactive visualization of multidimensional datasets registered to brain atlases. Brainrender facilitates the creation of complex renderings with different data types in the same visualization and enables seamless use of different atlas sources. High-quality visualizations can be used interactively and exported as high-resolution figures and animated videos. By facilitating the visualization of anatomically registered data, brainrender should accelerate the analysis, interpretation, and dissemination of brain-wide multidimensional data.

摘要

三维(3D)数字脑图谱和高通量全脑成像技术会产生可注册到公共参照系的大型多维数据集。从这些数据集中得出见解,关键取决于可视化和交互式数据探索,但这是一项具有挑战性的任务。当前可用的软件专门用于单一大脑图谱、模型物种或数据类型,并且生成合并来自不同来源的解剖注册数据的 3D 渲染需要广泛的开发和编程技能。在这里,我们介绍 brainrender:一个用于交互式可视化注册到大脑图谱的多维数据集的开源 Python 包。brainrender 有助于在同一可视化中创建具有不同数据类型的复杂渲染,并能够无缝使用不同的图谱源。高质量的可视化可以交互式使用,并导出为高分辨率的图形和动画视频。通过促进解剖注册数据的可视化,brainrender 应该会加速全脑多维数据的分析、解释和传播。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33d7/8079143/b2add77fd903/elife-65751-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验