Suppr超能文献

通过社交媒体上讨论的物质的历时性单词嵌入来检测涉及过量用药的新型药物。

Detection of emerging drugs involved in overdose via diachronic word embeddings of substances discussed on social media.

机构信息

School of Computational Science & Engineering, Georgia Institute of Technology, Atlanta, USA; Office of Strategy and Innovation, National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, Atlanta, USA.

Office of Strategy and Innovation, National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, Atlanta, USA.

出版信息

J Biomed Inform. 2021 Jul;119:103824. doi: 10.1016/j.jbi.2021.103824. Epub 2021 May 26.

Abstract

Substances involved in overdose deaths have shifted over time and continue to undergo transition. Early detection of emerging drugs involved in overdose is a major challenge for traditional public health data systems. While novel social media data have shown promise, there is a continued need for robust natural language processing approaches that can identify emerging substances. Consequently, we developed a new metric, the relative similarity ratio, based on diachronic word embeddings to measure movement in the semantic proximity of individual substance words to 'overdose' over time. Our analysis of 64,420,376 drug-related posts made between January 2011 and December 2018 on Reddit, the largest online forum site, reveals that this approach successfully identified fentanyl, the most significant emerging substance in the overdose epidemic, >1 year earlier than traditional public health data systems. Use of diachronic word embeddings may enable improved identification of emerging substances involved in drug overdose, thereby improving the timeliness of prevention and treatment activities.

摘要

涉及过量用药死亡的物质随时间推移而发生变化,并在持续转变。早期发现与过量用药有关的新兴药物是传统公共卫生数据系统面临的一大挑战。尽管新型社交媒体数据显示出了前景,但仍需要强大的自然语言处理方法来识别新兴物质。因此,我们开发了一种新的度量标准,即相对相似比,基于历时词嵌入来衡量单个物质词与“过量用药”的语义接近度随时间的变化。我们对 2011 年 1 月至 2018 年 12 月期间在 Reddit(最大的在线论坛网站)上发布的 6442.036 万条与毒品相关的帖子进行了分析,结果表明,与传统公共卫生数据系统相比,这种方法能够提前 1 年以上成功识别出在过量用药流行中占比最大的新兴物质——芬太尼。历时词嵌入的使用可能会提高对涉及药物过量用药的新兴物质的识别能力,从而提高预防和治疗活动的及时性。

相似文献

引用本文的文献

8
Interpol Review of Drug Analysis 2019-2022.国际刑警组织2019 - 2022年毒品分析综述
Forensic Sci Int Synerg. 2023 Jan 5;6:100299. doi: 10.1016/j.fsisyn.2022.100299. eCollection 2023.

本文引用的文献

7
Epidemiology of the U.S. opioid crisis: the importance of the vector.美国阿片危机的流行病学:载体的重要性。
Ann N Y Acad Sci. 2019 Sep;1451(1):130-143. doi: 10.1111/nyas.14209. Epub 2019 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验