Suppr超能文献

“我一直在服用阿得拉,并与止咳糖浆混合,希望我不会在睡梦中醒来”:利用推特了解黑人女性和男性订阅者中非医疗用途处方兴奋剂的使用情况。

"I Been Taking Adderall Mixing it With Lean, Hope I Don't Wake Up Out My Sleep": Harnessing Twitter to Understand Nonmedical Prescription Stimulant Use among Black Women and Men Subscribers.

作者信息

Webster Joni-Leigh, Lakamana Sahithi, Ge Yao, Sarker Abeed

机构信息

Department of Sociology, Laney Graduate School, Emory University.

Department of Biomedical Informatics, School of Medicine, Emory University.

出版信息

medRxiv. 2024 Dec 5:2024.12.03.24318408. doi: 10.1101/2024.12.03.24318408.

Abstract

Black women and men outpace other races for stimulant-involved overdose mortality despite lower lifetime use. Growth in mortality from prescription stimulant medications is increasing in tandem with prescribing patterns for these medications. We used Twitter to explore nonmedical prescription stimulant use (NMPSU) among Black women and men using emotion and sentiment analysis, and topic modeling. We applied the NRC Lexicon and VADER dictionary, and LDA topic modeling to examine feelings and themes in conversations about NMPSU by gender. We paid attention to the ability of natural language processing techniques to detect differences in emotion and sentiment among Black Twitter subscribers given increased mortality from stimulants. We found that, although emotion and sentiment outcomes match the directionality of emotions and sentiment observed (i.e., Black Twitter subscribers use more positive language in tweets), this belies limitations of NRC and VADER dictionaries to distinguish feelings for Black people. Even still, LDA topic models showcased the relevance of hip-hop, dependence on NMPSU, and recreational use as consequential to Black Twitter subscribers' discussions. However, gender shaped the relevance of these topics for each group. Greater attention needs to be paid to how Black women and men use social media to discuss important topics like drug use. Natural language processing methods and social media research should include larger proportions of Black, Hispanic/Latinx, and American Indian populations in development of emotion and sentiment lexicons, otherwise outcomes regarding NMPSU will not be generalizable to populations writ large due to cultural differences in communication about drug use online.

摘要

尽管黑人女性和男性终身使用兴奋剂的频率较低,但他们在涉及兴奋剂的过量用药死亡率方面超过了其他种族。处方兴奋剂药物导致的死亡率增长与这些药物的处方模式同步上升。我们利用推特,通过情感和情绪分析以及主题建模来探究黑人女性和男性中的非医疗处方兴奋剂使用(NMPSU)情况。我们应用了NRC词汇表和VADER词典,以及LDA主题建模来按性别检查关于NMPSU的对话中的情感和主题。鉴于兴奋剂导致的死亡率上升,我们关注自然语言处理技术检测黑人推特用户之间情感和情绪差异的能力。我们发现,尽管情感和情绪结果与观察到的情感和情绪方向性相匹配(即黑人推特用户在推文中使用更积极的语言),但这掩盖了NRC和VADER词典在区分黑人情感方面的局限性。即便如此,LDA主题模型展示了嘻哈、对NMPSU的依赖以及娱乐性使用与黑人推特用户讨论的相关性。然而,性别塑造了这些主题对每个群体的相关性。需要更加关注黑人女性和男性如何利用社交媒体讨论药物使用等重要话题。自然语言处理方法和社交媒体研究在开发情感和情绪词典时应纳入更大比例的黑人、西班牙裔/拉丁裔和美国印第安人群体,否则由于在线药物使用交流中的文化差异,关于NMPSU的结果将无法推广到更广泛的人群。

相似文献

本文引用的文献

1
Key language markers of depression on social media depend on race.社交媒体上抑郁症的关键语言标志物取决于种族。
Proc Natl Acad Sci U S A. 2024 Apr 2;121(14):e2319837121. doi: 10.1073/pnas.2319837121. Epub 2024 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验