Suppr超能文献

QCovid 风险预测算法对成年人 COVID-19 死亡率风险的外部验证:英格兰全国验证队列研究。

An external validation of the QCovid risk prediction algorithm for risk of mortality from COVID-19 in adults: a national validation cohort study in England.

机构信息

Office for National Statistics, Newport, UK.

Office for National Statistics, Newport, UK.

出版信息

Lancet Digit Health. 2021 Jul;3(7):e425-e433. doi: 10.1016/S2589-7500(21)00080-7. Epub 2021 May 25.

Abstract

BACKGROUND

Public policy measures and clinical risk assessments relevant to COVID-19 need to be aided by risk prediction models that are rigorously developed and validated. We aimed to externally validate a risk prediction algorithm (QCovid) to estimate mortality outcomes from COVID-19 in adults in England.

METHODS

We did a population-based cohort study using the UK Office for National Statistics Public Health Linked Data Asset, a cohort of individuals aged 19-100 years, based on the 2011 census and linked to Hospital Episode Statistics, the General Practice Extraction Service data for pandemic planning and research, and radiotherapy and systemic chemotherapy records. The primary outcome was time to COVID-19 death, defined as confirmed or suspected COVID-19 death as per death certification. Two periods were used: (1) Jan 24 to April 30, 2020, and (2) May 1 to July 28, 2020. We assessed the performance of the QCovid algorithms using measures of discrimination and calibration. Using predicted 90-day risk of COVID-19 death, we calculated r values, Brier scores, and measures of discrimination and calibration with corresponding 95% CIs over the two time periods.

FINDINGS

We included 34 897 648 adults aged 19-100 years resident in England. 26 985 (0·08%) COVID-19 deaths occurred during the first period and 13 177 (0·04%) during the second. The algorithms had good discrimination and calibration in both periods. In the first period, they explained 77·1% (95% CI 76·9-77·4) of the variation in time to death in men and 76·3% (76·0-76·6) in women. The D statistic was 3·761 (3·732-3·789) for men and 3·671 (3·640-3·702) for women and Harrell's C was 0·935 (0·933-0·937) for men and 0·945 (0·943-0·947) for women. Similar results were obtained for the second time period. In the top 5% of patients with the highest predicted risks of death, the sensitivity for identifying deaths in the first period was 65·94% for men and 71·67% for women.

INTERPRETATION

The QCovid population-based risk algorithm performed well, showing high levels of discrimination for COVID-19 deaths in men and women for both time periods. QCovid has the potential to be dynamically updated as the pandemic evolves and, therefore, has potential use in guiding national policy.

FUNDING

UK National Institute for Health Research.

摘要

背景

与 COVID-19 相关的公共政策措施和临床风险评估需要借助经过严格开发和验证的风险预测模型来辅助。我们旨在对一种风险预测算法(QCovid)进行外部验证,以估计英格兰成年 COVID-19 患者的死亡率。

方法

我们使用英国国家统计局公共卫生关联数据资产进行了一项基于人群的队列研究,该队列包括年龄在 19-100 岁之间的个体,基于 2011 年的人口普查,并与医院发病统计数据、大流行规划和研究的全科医生提取服务数据以及放射治疗和全身化疗记录相关联。主要结局是 COVID-19 死亡的时间,定义为根据死亡证明确定或疑似 COVID-19 死亡。我们使用了两个时期:(1)1 月 24 日至 4 月 30 日,(2)5 月 1 日至 7 月 28 日。我们使用区分度和校准度的测量指标评估 QCovid 算法的性能。使用预测的 90 天 COVID-19 死亡风险,我们计算了 r 值、Brier 评分以及两个时期的区分度和校准度的相应 95%置信区间。

结果

我们纳入了 34897648 名居住在英格兰的 19-100 岁成年人。第一个时期有 26985 例(0.08%)COVID-19 死亡,第二个时期有 13177 例(0.04%)。在两个时期,这些算法都具有良好的区分度和校准度。在第一个时期,它们解释了男性死亡时间变化的 77.1%(95%CI 76.9-77.4)和女性的 76.3%(76.0-76.6)。男性的 D 统计量为 3.761(3.732-3.789),女性为 3.671(3.640-3.702),男性的哈雷尔 C 为 0.935(0.933-0.937),女性为 0.945(0.943-0.947)。第二个时期也得到了类似的结果。在预测死亡风险最高的前 5%的患者中,第一个时期男性识别死亡的敏感度为 65.94%,女性为 71.67%。

结论

QCovid 基于人群的风险算法表现良好,在两个时期均显示出对男性和女性 COVID-19 死亡的高区分度。QCovid 具有随着大流行的发展进行动态更新的潜力,因此具有指导国家政策的潜力。

资助

英国国家卫生研究院。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee2e/8216957/25e8cf338aa1/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验