Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA.
NMR Biomed. 2021 Sep;34(9):e4568. doi: 10.1002/nbm.4568. Epub 2021 May 29.
Alzheimer's disease (AD) is the leading cause of cognitive impairment and dementia in elderly individuals. According to the current biomarker framework for "unbiased descriptive classification", biomarkers of neurodegeneration, "N", constitute a critical component in the tri-category "A/T/N" system. Current biomarkers of neurodegeneration suffer from potential drawbacks such as requiring invasive lumbar puncture, involving ionizing radiation, or representing a late, irreversible marker. Recent human studies have suggested that reduced brain oxygen metabolism may be a new functional marker of neurodegeneration in AD, but the heterogeneity and the presence of mixed pathology in human patients did not allow a full understanding of the role of oxygen extraction and metabolism in AD. In this report, global brain oxygen metabolism and related physiological parameters were studied in two AD mouse models with relatively pure pathology, using advanced MRI techniques including T -relaxation-under-spin-tagging (TRUST) and phase contrast (PC) MRI. Additionally, regional cerebral blood flow (CBF) was determined with pseudocontinuous arterial spin labeling. Reduced global oxygen extraction fraction (by -18.7%, p = 0.008), unit-mass cerebral metabolic rate of oxygen (CMRO ) (by -17.4%, p = 0.04) and total CMRO (by -30.8%, p < 0.001) were observed in Tau4RΔK mice-referred to as the tau AD model-which manifested pronounced neurodegeneration, as measured by diminished brain volume (by -15.2%, p < 0.001). Global and regional CBF in these mice were not different from those of wild-type mice (p > 0.05), suggesting normal vascular function. By contrast, in B6;SJL-Tg [APPSWE]2576Kha (APP) mice-referred to as the amyloid AD model-no brain volume reduction, as well as relatively intact brain oxygen extraction and metabolism, were found (p > 0.05). Consistent with the imaging data, behavioral measures of walking distance were impaired in Tau4RΔK mice (p = 0.004), but not in APP mice (p = 0.88). Collectively, these findings support the hypothesis that noninvasive MRI measurement of brain oxygen metabolism may be a promising biomarker of neurodegeneration in AD.
阿尔茨海默病(AD)是导致老年人认知障碍和痴呆的主要原因。根据目前用于“无偏描述性分类”的生物标志物框架,神经退行性变的生物标志物“N”是三分类“A/T/N”系统的一个关键组成部分。目前的神经退行性变生物标志物存在一些潜在的缺点,例如需要进行有创的腰椎穿刺、涉及电离辐射或代表晚期、不可逆转的标志物。最近的人类研究表明,脑氧代谢减少可能是 AD 神经退行性变的一个新的功能标志物,但人类患者的异质性和混合病理学的存在使得人们无法充分了解氧摄取和代谢在 AD 中的作用。在本报告中,我们使用先进的 MRI 技术,包括 T-松弛下自旋标记(TRUST)和相位对比(PC)MRI,研究了两种具有相对纯净病理学的 AD 小鼠模型中的全脑氧代谢和相关生理参数。此外,还使用假性连续动脉自旋标记法测定了局部脑血流(CBF)。在 Tau4RΔK 小鼠(称为 tau AD 模型)中观察到全脑氧摄取分数(降低 18.7%,p=0.008)、单位质量脑氧代谢率(CMRO)(降低 17.4%,p=0.04)和总 CMRO(降低 30.8%,p<0.001)降低,这些小鼠表现出明显的神经退行性变,表现为脑体积减少(降低 15.2%,p<0.001)。这些小鼠的全脑和局部 CBF 与野生型小鼠无差异(p>0.05),提示血管功能正常。相比之下,在 B6;SJL-Tg [APPSWE]2576Kha(APP)小鼠(称为淀粉样 AD 模型)中,未发现脑体积减少以及相对完整的脑氧摄取和代谢(p>0.05)。与影像学数据一致,Tau4RΔK 小鼠的行走距离行为测量受损(p=0.004),而 APP 小鼠未受损(p=0.88)。总的来说,这些发现支持了这样的假设,即脑氧代谢的无创 MRI 测量可能是 AD 神经退行性变的一个有前途的生物标志物。