Tao Jianwen, Dan Yufang
Institute of Artificial Intelligence Application, Ningbo Polytechnic, Zhejiang, China.
Front Neurosci. 2021 May 13;15:677106. doi: 10.3389/fnins.2021.677106. eCollection 2021.
Since each individual subject may present completely different encephalogram (EEG) patterns with respect to other subjects, existing subject-independent emotion classifiers trained on data sampled from cross-subjects or cross-dataset generally fail to achieve sound accuracy. In this scenario, the domain adaptation technique could be employed to address this problem, which has recently got extensive attention due to its effectiveness on cross-distribution learning. Focusing on cross-subject or cross-dataset automated emotion recognition with EEG features, we propose in this article a robust multi-source co-adaptation framework by mining diverse correlation information (MACI) among domains and features with - as well as correlation metric regularization. Specifically, by minimizing the statistical and semantic distribution differences between source and target domains, multiple subject-invariant classifiers can be learned together in a joint framework, which can make MACI use relevant knowledge from multiple sources by exploiting the developed correlation metric function. Comprehensive experimental evidence on DEAP and SEED datasets verifies the better performance of MACI in EEG-based emotion recognition.
由于每个个体的脑电图(EEG)模式可能与其他个体完全不同,因此基于跨个体或跨数据集采样数据训练的现有独立于个体的情感分类器通常无法获得良好的准确率。在这种情况下,可以采用域适应技术来解决这个问题,由于其在跨分布学习方面的有效性,该技术最近受到了广泛关注。针对基于EEG特征的跨个体或跨数据集自动情感识别,我们在本文中提出了一种稳健的多源协同适应框架,即通过挖掘不同域和特征之间的多样相关信息(MACI)以及相关度量正则化。具体而言,通过最小化源域和目标域之间的统计和语义分布差异,可以在一个联合框架中共同学习多个个体不变分类器,这可以使MACI通过利用所开发的相关度量函数从多个源中使用相关知识。在DEAP和SEED数据集上的综合实验证据验证了MACI在基于EEG的情感识别中的更好性能。