Suppr超能文献

三级淋巴结构可作为癌症免疫治疗反应的预测性生物标志物。

Tertiary Lymphoid Structures as a Predictive Biomarker of Response to Cancer Immunotherapies.

机构信息

Laboratory of Cancer Immunology, Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland.

Medical Oncology, University Hospital Basel, Basel, Switzerland.

出版信息

Front Immunol. 2021 May 12;12:674565. doi: 10.3389/fimmu.2021.674565. eCollection 2021.

Abstract

Tertiary lymphoid structures (TLS) are ectopic lymphoid formations which are formed under long-lasting inflammatory conditions, including tumours. TLS are composed predominantly of B cells, T cells and dendritic cells, and display various levels of organisation, from locally concentrated aggregates of immune cells, through clearly defined B cell follicles to mature follicles containing germinal centres. Their presence has been strongly associated with improved survival and clinical outcome upon cancer immunotherapies for patients with solid tumours, indicating potential for TLS to be used as a prognostic and predictive factor. Although signals involved in TLS generation and main cellular components of TLS have been extensively characterised, the exact mechanism by which TLS contribute to the anti-tumour response remain unclear. Here, we summarise the most recent development in our understanding of their role in cancer and in particular in the response to cancer immunotherapy. Deciphering the relationship between B cells and T cells found in TLS is a highly exciting field of investigation, with the potential to lead to novel, B-cell focused immunotherapies.

摘要

三级淋巴结构 (TLS) 是在长期炎症条件下形成的异位淋巴组织,包括肿瘤。TLS 主要由 B 细胞、T 细胞和树突状细胞组成,并表现出不同程度的组织,从局部集中的免疫细胞聚集物,到明确界定的 B 细胞滤泡,再到含有生发中心的成熟滤泡。它们的存在与接受实体瘤癌症免疫治疗的患者的生存和临床结果的改善密切相关,表明 TLS 有可能被用作预后和预测因素。尽管 TLS 生成的信号和 TLS 的主要细胞成分已被广泛描述,但 TLS 促进抗肿瘤反应的确切机制仍不清楚。在这里,我们总结了最近在理解它们在癌症中的作用方面的最新进展,特别是在癌症免疫治疗反应方面的进展。解析 TLS 中发现的 B 细胞和 T 细胞之间的关系是一个令人兴奋的研究领域,有可能导致新的、以 B 细胞为重点的免疫疗法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be03/8149953/cd2121d31c02/fimmu-12-674565-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验