Suppr超能文献

DeepOMe:基于混合卷积神经网络和双向长短期记忆网络架构预测2'-O-甲基化位点的网络服务器。

DeepOMe: A Web Server for the Prediction of 2'-O-Me Sites Based on the Hybrid CNN and BLSTM Architecture.

作者信息

Li Hongyu, Chen Li, Huang Zaoli, Luo Xiaotong, Li Huiqin, Ren Jian, Xie Yubin

机构信息

School of Life Sciences, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.

School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China.

出版信息

Front Cell Dev Biol. 2021 May 14;9:686894. doi: 10.3389/fcell.2021.686894. eCollection 2021.

Abstract

2'-O-methylations (2'-O-Me or Nm) are one of the most important layers of regulatory control over gene expression. With increasing attentions focused on the characteristics, mechanisms and influences of 2'-O-Me, a revolutionary technique termed Nm-seq were established, allowing the identification of precise 2'-O-Me sites in RNA sequences with high sensitivity. However, as the costs and complexities involved with this new method, the large-scale detection and in-depth study of 2'-O-Me is still largely limited. Therefore, the development of a novel computational method to identify 2'-O-Me sites with adequate reliability is urgently needed at the current stage. To address the above issue, we proposed a hybrid deep-learning algorithm named DeepOMe that combined Convolutional Neural Networks (CNN) and Bidirectional Long Short-term Memory (BLSTM) to accurately predict 2'-O-Me sites in human transcriptome. Validating under 4-, 6-, 8-, and 10-fold cross-validation, we confirmed that our proposed model achieved a high performance (AUC close to 0.998 and AUPR close to 0.880). When testing in the independent data set, DeepOMe was substantially superior to NmSEER V2.0. To facilitate the usage of DeepOMe, a user-friendly web-server was constructed, which can be freely accessed at http://deepome.renlab.org.

摘要

2'-O-甲基化(2'-O-Me或Nm)是基因表达调控控制中最重要的层面之一。随着对2'-O-Me的特征、机制和影响的关注度不断提高,一种名为Nm-seq的革命性技术得以建立,它能够以高灵敏度识别RNA序列中精确的2'-O-Me位点。然而,由于这种新方法涉及的成本和复杂性,2'-O-Me的大规模检测和深入研究仍然受到很大限制。因此,现阶段迫切需要开发一种具有足够可靠性的识别2'-O-Me位点的新型计算方法。为了解决上述问题,我们提出了一种名为DeepOMe的混合深度学习算法,该算法结合了卷积神经网络(CNN)和双向长短期记忆网络(BLSTM),以准确预测人类转录组中的2'-O-Me位点。在4倍、6倍、8倍和10倍交叉验证下进行验证,我们证实我们提出的模型具有高性能(AUC接近0.998,AUPR接近0.880)。在独立数据集中进行测试时,DeepOMe明显优于NmSEER V2.0。为了方便使用DeepOMe,构建了一个用户友好的网络服务器,可通过http://deepome.renlab.org免费访问。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/408c/8160107/29f73c824d9d/fcell-09-686894-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验