Suppr超能文献

具有三体相互作用的准一维玻色-爱因斯坦凝聚体中暗孤子的稳定性分析。

Stability analysis on dark solitons in quasi-1D Bose-Einstein condensate with three-body interactions.

作者信息

Zhou Yushan, Meng Hongjuan, Zhang Juan, Li Xiaolin, Ren Xueping, Wan Xiaohuan, Zhou Zhikun, Wang Jing, Fan Xiaobei, Shi Yuren

机构信息

College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, 730070, People's Republic of China.

Laboratory of Atomic Molecular Physics and Functional Material, Northwest Normal University, Lanzhou, 730070, People's Republic of China.

出版信息

Sci Rep. 2021 May 31;11(1):11382. doi: 10.1038/s41598-021-90814-2.

Abstract

The stability properties of dark solitons in quasi-one-dimensional Bose-Einstein condensate (BEC) loaded in a Jacobian elliptic sine potential with three-body interactions are investigated theoretically. The solitons are obtained by the Newton-Conjugate Gradient method. A stationary cubic-quintic nonlinear Schrödinger equation is derived to describe the profiles of solitons via the multi-scale technique. It is found that the three-body interaction has distinct effect on the stability properties of solitons. Especially, such a nonlinear system supports the so-called dark solitons (kink or bubble), which can be excited not only in the gap, but also in the band. The bubbles are always linearly and dynamically unstable, and they cannot be excited if the three-body interaction is absent. Both stable and unstable kinks, depending on the physical parameters, can be excited in the BEC system.

摘要

理论上研究了加载在具有三体相互作用的雅可比椭圆正弦势中的准一维玻色-爱因斯坦凝聚体(BEC)中暗孤子的稳定性特性。通过牛顿共轭梯度法获得孤子。利用多尺度技术推导了一个定常的立方-五次非线性薛定谔方程来描述孤子的轮廓。发现三体相互作用对孤子的稳定性特性有显著影响。特别是,这样的非线性系统支持所谓的暗孤子(扭结或泡),其不仅可以在能隙中激发,也可以在能带中激发。泡总是线性和动态不稳定的,并且如果没有三体相互作用,它们就不能被激发。根据物理参数,稳定和不稳定的扭结都可以在BEC系统中被激发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5cc/8166838/afdcaad3b4a2/41598_2021_90814_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验