Suppr超能文献

预测基因调控网络中的响应函数。

Anticipating response function in gene regulatory networks.

机构信息

Theoretical and Computational Biophysical Chemistry Group, Department of Chemistry, Indian Institute of Technology, Ropar 140001, India.

出版信息

J R Soc Interface. 2021 Jun;18(179):20210206. doi: 10.1098/rsif.2021.0206. Epub 2021 Jun 2.

Abstract

The origin of an ordered genetic response of a complex and noisy biological cell is intimately related to the detailed mechanism of protein-DNA interactions present in a wide variety of gene regulatory (GR) systems. However, the quantitative prediction of genetic response and the correlation between the mechanism and the response curve is poorly understood. Here, we report binding studies of GR systems to show that the transcription factor (TF) binds to multiple DNA sites with high cooperativity spreads from specific binding sites into adjacent non-specific DNA and bends the DNA. Our analysis is not limited only to the isolated model system but also can be applied to a system containing multiple interacting genes. The controlling role of TF oligomerization, TF-ligand interactions, and DNA looping for gene expression has been also characterized. The predictions are validated against detailed grand canonical Monte Carlo simulations and published data for the operon system. Overall, our study reveals that the expression of target genes can be quantitatively controlled by modulating TF-ligand interactions and the bending energy of DNA.

摘要

复杂且嘈杂的生物细胞的有序遗传反应的起源与广泛存在的基因调控(GR)系统中的蛋白质-DNA 相互作用的详细机制密切相关。然而,遗传反应的定量预测以及机制与反应曲线之间的相关性尚不清楚。在这里,我们报告了 GR 系统的结合研究,以表明转录因子(TF)与多个 DNA 位点具有高协同性结合,从特定结合位点扩展到相邻的非特异性 DNA 并使 DNA 弯曲。我们的分析不仅限于孤立的模型系统,还可以应用于包含多个相互作用基因的系统。还对 TF 寡聚化、TF-配体相互作用和 DNA 环化对基因表达的控制作用进行了表征。预测结果与针对 操纵子系统的详细巨正则蒙特卡罗模拟和已发表数据进行了验证。总的来说,我们的研究表明,通过调节 TF-配体相互作用和 DNA 的弯曲能,可以对靶基因的表达进行定量控制。

相似文献

1
Anticipating response function in gene regulatory networks.
J R Soc Interface. 2021 Jun;18(179):20210206. doi: 10.1098/rsif.2021.0206. Epub 2021 Jun 2.
2
Self-consistent theory of transcriptional control in complex regulatory architectures.
PLoS One. 2017 Jul 7;12(7):e0179235. doi: 10.1371/journal.pone.0179235. eCollection 2017.
4
Determinants of correlated expression of transcription factors and their target genes.
Nucleic Acids Res. 2020 Nov 18;48(20):11347-11369. doi: 10.1093/nar/gkaa927.
6
A New Mechanism for Mendelian Dominance in Regulatory Genetic Pathways: Competitive Binding by Transcription Factors.
Genetics. 2017 Jan;205(1):101-112. doi: 10.1534/genetics.116.195255. Epub 2016 Nov 18.
7
Comprehensive, high-resolution binding energy landscapes reveal context dependencies of transcription factor binding.
Proc Natl Acad Sci U S A. 2018 Apr 17;115(16):E3702-E3711. doi: 10.1073/pnas.1715888115. Epub 2018 Mar 27.
8
Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks.
Genome Res. 2012 Jul;22(7):1334-49. doi: 10.1101/gr.127191.111. Epub 2012 Mar 28.
10
Identification of context-specific gene regulatory networks with GEMULA--gene expression modeling using LAsso.
Bioinformatics. 2012 Jan 15;28(2):214-21. doi: 10.1093/bioinformatics/btr641. Epub 2011 Nov 21.

引用本文的文献

1
The Blueprint of Logical Decisions in a NF-κB Signaling System.
ACS Omega. 2024 May 13;9(21):22625-22634. doi: 10.1021/acsomega.4c00049. eCollection 2024 May 28.
2
In vivo, in vitro and in silico: an open space for the development of microbe-based applications of synthetic biology.
Microb Biotechnol. 2022 Jan;15(1):42-64. doi: 10.1111/1751-7915.13937. Epub 2021 Sep 27.

本文引用的文献

2
Gene Regulation in and out of Equilibrium.
Annu Rev Biophys. 2020 May 6;49:199-226. doi: 10.1146/annurev-biophys-121219-081542.
3
Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials.
Signal Transduct Target Ther. 2019 Dec 17;4:62. doi: 10.1038/s41392-019-0095-0. eCollection 2019.
4
Physical Chemistry of Epigenetics: Single-Molecule Investigations.
J Phys Chem B. 2019 Oct 10;123(40):8351-8362. doi: 10.1021/acs.jpcb.9b06214. Epub 2019 Aug 30.
5
Thermodynamic model of gene regulation for the Or59b olfactory receptor in Drosophila.
PLoS Comput Biol. 2019 Jan 17;15(1):e1006709. doi: 10.1371/journal.pcbi.1006709. eCollection 2019 Jan.
6
Theoretical analysis of inducer and operator binding for cyclic-AMP receptor protein mutants.
PLoS One. 2018 Sep 26;13(9):e0204275. doi: 10.1371/journal.pone.0204275. eCollection 2018.
7
Inflammatory responses and inflammation-associated diseases in organs.
Oncotarget. 2017 Dec 14;9(6):7204-7218. doi: 10.18632/oncotarget.23208. eCollection 2018 Jan 23.
8
Structural basis of bacterial transcription activation.
Science. 2017 Nov 17;358(6365):947-951. doi: 10.1126/science.aao1923.
9
Self-consistent theory of transcriptional control in complex regulatory architectures.
PLoS One. 2017 Jul 7;12(7):e0179235. doi: 10.1371/journal.pone.0179235. eCollection 2017.
10
Napoleon Is in Equilibrium.
Annu Rev Condens Matter Phys. 2015 Mar;6:85-111. doi: 10.1146/annurev-conmatphys-031214-014558.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验