Department of Physics, California Institute of Technology, Pasadena, CA, United States of America.
Department of Physics and the London Centre for Nanotechnology, University College London, London, United Kingdom.
PLoS One. 2018 Sep 26;13(9):e0204275. doi: 10.1371/journal.pone.0204275. eCollection 2018.
Allosteric transcription factors undergo binding events at inducer binding sites as well as at distinct DNA binding domains, and it is difficult to disentangle the structural and functional consequences of these two classes of interactions. We compare the ability of two statistical mechanical models-the Monod-Wyman-Changeux (MWC) and the Koshland-Némethy-Filmer (KNF) models of protein conformational change-to characterize the multi-step activation mechanism of the broadly acting cyclic-AMP receptor protein (CRP). We first consider the allosteric transition resulting from cyclic-AMP binding to CRP, then analyze how CRP binds to its operator, and finally investigate the ability of CRP to activate gene expression. We use these models to examine a beautiful recent experiment that created a single-chain version of the CRP homodimer, creating six mutants using all possible combinations of the wild type, D53H, and S62F subunits. We demonstrate that the MWC model can explain the behavior of all six mutants using a small, self-consistent set of parameters whose complexity scales with the number of subunits, providing a significant benefit over previous models. In comparison, the KNF model not only leads to a poorer characterization of the available data but also fails to generate parameter values in line with the available structural knowledge of CRP. In addition, we discuss how the conceptual framework developed here for CRP enables us to not merely analyze data retrospectively, but has the predictive power to determine how combinations of mutations will interact, how double mutants will behave, and how each construct would regulate gene expression.
变构转录因子在诱导剂结合位点以及独特的 DNA 结合结构域发生结合事件,很难区分这两类相互作用的结构和功能后果。我们比较了两种统计力学模型——Monod-Wyman-Changeux (MWC) 和 Koshland-Némethy-Filmer (KNF) 模型——来描述广泛作用的环腺苷酸受体蛋白 (CRP) 的多步激活机制。我们首先考虑环 AMP 结合到 CRP 引起的变构转变,然后分析 CRP 如何与其操纵子结合,最后研究 CRP 激活基因表达的能力。我们使用这些模型来研究一个最近的漂亮实验,该实验创建了 CRP 同源二聚体的单链版本,使用野生型、D53H 和 S62F 亚基的所有可能组合创建了六个突变体。我们证明 MWC 模型可以使用一个小的、自洽的参数集来解释所有六个突变体的行为,这些参数的复杂性与亚基的数量成正比,与以前的模型相比具有显著的优势。相比之下,KNF 模型不仅导致对现有数据的描述较差,而且无法生成与 CRP 现有结构知识一致的参数值。此外,我们讨论了这里为 CRP 开发的概念框架如何使我们不仅能够回顾性地分析数据,而且具有预测能力,可以确定突变组合如何相互作用、双突变体如何表现以及每个构建体如何调节基因表达。