Suppr超能文献

基于光电容积脉搏波信号分类的智能自动化心脏健康监测

Smart automated heart health monitoring using photoplethysmography signal classification.

机构信息

Department of Electronics and Communication Engineering, SRM Institute of Science and Technology, Kancheepuram, Tamil Nadu, India.

出版信息

Biomed Tech (Berl). 2020 Dec 21;66(3):247-256. doi: 10.1515/bmt-2020-0113. Print 2021 Jun 25.

Abstract

This paper proposes a smart, automated heart health-monitoring (SAHM) device using a single photoplethysmography (PPG) sensor that can monitor cardiac health. The SAHM uses an Orthogonal Matching Pursuit (OMP)-based classifier along with low-rank motion artifact removal as a pre-processing stage. Major contributions of the proposed SAHM device over existing state-of-the-art technologies include these factors: (i) the detection algorithm works with robust features extracted from a single PPG sensor; (ii) the motion compensation algorithm for the PPG signal can make the device wearable; and (iii) the real-time analysis of PPG input and sharing through the Internet. The proposed low-cost, compact and user-friendly PPG device can also be prototyped easily. The SAHM system was tested on three different datasets, and detailed performance analysis was carried out to show and prove the efficiency of the proposed algorithm.

摘要

本文提出了一种使用单个光电容积脉搏波(PPG)传感器的智能、自动化心脏健康监测(SAHM)设备,可监测心脏健康。SAHM 使用基于正交匹配追踪(OMP)的分类器和低秩运动伪影去除作为预处理阶段。与现有最先进技术相比,所提出的 SAHM 设备的主要贡献包括以下几个方面:(i)检测算法可与从单个 PPG 传感器提取的稳健特征一起使用;(ii)PPG 信号的运动补偿算法可使设备实现可穿戴;(iii)通过互联网对 PPG 输入进行实时分析和共享。所提出的低成本、紧凑且用户友好的 PPG 设备也可以轻松进行原型制作。SAHM 系统在三个不同的数据集上进行了测试,并进行了详细的性能分析,以展示和证明所提出算法的效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验