Suppr超能文献

应用机器学习算法以更好地理解与脂质辅料共处理的乳糖的压片特性。

Application of Machine-Learning Algorithms for Better Understanding of Tableting Properties of Lactose Co-Processed with Lipid Excipients.

作者信息

Djuris Jelena, Cirin-Varadjan Slobodanka, Aleksic Ivana, Djuris Mihal, Cvijic Sandra, Ibric Svetlana

机构信息

Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia.

Hemofarm STADA A.D., Beogradski put bb, 26300 Vršac, Serbia.

出版信息

Pharmaceutics. 2021 May 5;13(5):663. doi: 10.3390/pharmaceutics13050663.

Abstract

Co-processing (CP) provides superior properties to excipients and has become a reliable option to facilitated formulation and manufacturing of variety of solid dosage forms. Development of directly compressible formulations with high doses of poorly flowing/compressible active pharmaceutical ingredients, such as paracetamol, remains a great challenge for the pharmaceutical industry due to the lack of understanding of the interplay between the formulation properties, process of compaction, and stages of tablets' detachment and ejection. The aim of this study was to analyze the influence of the compression load, excipients' co-processing and the addition of paracetamol on the obtained tablets' tensile strength and the specific parameters of the tableting process, such as (net) compression work, elastic recovery, detachment, and ejection work, as well as the ejection force. Two types of neural networks were used to analyze the data: classification (Kohonen network) and regression networks (multilayer perceptron and radial basis function), to build prediction models and identify the variables that are predominantly affecting the tableting process and the obtained tablets' tensile strength. It has been demonstrated that sophisticated data-mining methods are necessary to interpret complex phenomena regarding the effect of co-processing on tableting properties of directly compressible excipients.

摘要

共处理(CP)赋予辅料优异的性能,已成为促进各种固体剂型的制剂研发与生产的可靠选择。对于制药行业而言,开发含有高剂量流动性差/可压性差的活性药物成分(如对乙酰氨基酚)的直接压片制剂仍然是一项巨大挑战,因为人们对制剂性能、压片过程以及片剂脱模和顶出阶段之间的相互作用缺乏了解。本研究的目的是分析压缩负荷、辅料的共处理以及对乙酰氨基酚的添加对所得片剂抗张强度和压片过程特定参数(如(净)压缩功、弹性恢复、脱模和顶出功以及顶出力)的影响。使用了两种类型的神经网络来分析数据:分类(Kohonen网络)和回归网络(多层感知器和径向基函数),以建立预测模型并确定主要影响压片过程和所得片剂抗张强度的变量。结果表明,需要采用复杂的数据挖掘方法来解释关于共处理对直接压片辅料压片性能影响的复杂现象。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c568/8148097/90d5b53e3248/pharmaceutics-13-00663-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验