Suppr超能文献

基于合成孔径雷达、多光谱和热红外数据融合的基于权重的土壤水分含量估计新方法。

Novel Weight-Based Approach for Soil Moisture Content Estimation via Synthetic Aperture Radar, Multispectral and Thermal Infrared Data Fusion.

作者信息

Yahia Oualid, Guida Raffaella, Iervolino Pasquale

机构信息

Centre des Techniques Spatiales, Algerian Space Agency, Arzew 31200, Algeria.

Surrey Space Centre, University of Surrey, Guildford GU2 7XH, UK.

出版信息

Sensors (Basel). 2021 May 15;21(10):3457. doi: 10.3390/s21103457.

Abstract

Though current remote sensing technologies, especially synthetic aperture radars (SARs), exhibit huge potential for soil moisture content (SMC) retrievals, such technologies also present several performance disadvantages. This study explored the merits of proposing a novel data fusion methodology (partly decision level and partly feature level) for SMC estimation. Initially, individual estimations were derived from three distinct methods: the inversion of an Empirically Adapted Integral Equation Model (EA-IEM) applied to SAR data, the Perpendicular Drought Index (PDI), and the Temperature Vegetation Dryness Index (TVDI) determined from Landsat-8 data. Subsequently, three feature level fusions were performed to produce three different novel salient feature combinations where said features were extracted from each of the previously mentioned methods to be the input of an artificial neural network (ANN). The latter underwent a modification of its performance function, more specifically from absolute error to root mean square error (RMSE). Eventually, all SMC estimations, including the feature level fusion estimation, were fused at the decision level through a novel weight-based estimation. The performance of the proposed system was analysed and validated by measurements collected from three study areas, an agricultural field in Blackwell farms, Guildford, United Kingdom, and two different agricultural fields in Sidi Rached, Tipasa, Algeria. Those measurements contained SMC levels and surface roughness profiles. The proposed SMC estimation system yielded stronger correlations and lower RMSE values than any of the considered SMC estimation methods in the order of 0.38%, 1.4%, and 1.09% for the Blackwell farms, Sidi Rached 1, and Sidi Rached 2 datasets, respectively.

摘要

尽管当前的遥感技术,尤其是合成孔径雷达(SAR),在土壤湿度含量(SMC)反演方面展现出巨大潜力,但这些技术也存在一些性能缺陷。本研究探讨了提出一种用于SMC估算的新型数据融合方法(部分为决策层融合,部分为特征层融合)的优点。最初,通过三种不同方法得出单独的估算结果:将经验自适应积分方程模型(EA - IEM)应用于SAR数据进行反演、垂直干旱指数(PDI)以及根据Landsat - 8数据确定的温度植被干旱指数(TVDI)。随后,进行了三次特征层融合,以产生三种不同的新型显著特征组合,其中所述特征是从上述每种方法中提取出来作为人工神经网络(ANN)的输入。后者对其性能函数进行了修改,更具体地说是从绝对误差改为均方根误差(RMSE)。最终,所有SMC估算结果,包括特征层融合估算结果,通过一种基于权重的新型估算方法在决策层进行融合。通过从三个研究区域收集的测量数据对所提出系统的性能进行了分析和验证,这三个区域分别是英国吉尔福德布莱克韦尔农场的一块农田以及阿尔及利亚提帕萨西迪拉赫德的两块不同农田。这些测量数据包含SMC水平和表面粗糙度剖面。所提出的SMC估算系统在相关性方面比任何一种考虑的SMC估算方法都更强,并且在布莱克韦尔农场、西迪拉赫德1和西迪拉赫德2数据集上的RMSE值分别降低了0.38%、1.4%和1.09%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff13/8156304/16d572f4ed37/sensors-21-03457-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验