Yang Xiaofei, Chen Junying, Lu Xiaohan, Liu Hao, Liu Yanfu, Bai Xuqian, Qian Long, Zhang Zhitao
College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang 712100, China.
Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China.
Plants (Basel). 2025 Aug 15;14(16):2544. doi: 10.3390/plants14162544.
With the advancement of precision agriculture, Unmanned Aerial Vehicle (UAV)-based remote sensing has been increasingly employed for monitoring crop water and nutrient status due to its high flexibility, fine spatial resolution, and rapid data acquisition capabilities. This review systematically examines recent research progress and key technological pathways in UAV-based remote sensing for crop water and nutrient monitoring. It provides an in-depth analysis of UAV platforms, sensor configurations, and their suitability across diverse agricultural applications. The review also highlights critical data processing steps-including radiometric correction, image stitching, segmentation, and data fusion-and compares three major modeling approaches for parameter inversion: vegetation index-based, data-driven, and physically based methods. Representative application cases across various crops and spatiotemporal scales are summarized. Furthermore, the review explores factors affecting monitoring performance, such as crop growth stages, spatial resolution, illumination and meteorological conditions, and model generalization. Despite significant advancements, current limitations include insufficient sensor versatility, labor-intensive data processing chains, and limited model scalability. Finally, the review outlines future directions, including the integration of edge intelligence, hybrid physical-data modeling, and multi-source, three-dimensional collaborative sensing. This work aims to provide theoretical insights and technical support for advancing UAV-based remote sensing in precision agriculture.
随着精准农业的发展,基于无人机(UAV)的遥感技术因其高度灵活性、精细的空间分辨率和快速的数据采集能力,越来越多地用于监测作物的水分和养分状况。本综述系统地研究了基于无人机的遥感技术在作物水分和养分监测方面的最新研究进展和关键技术路径。它深入分析了无人机平台、传感器配置及其在各种农业应用中的适用性。该综述还重点介绍了关键的数据处理步骤,包括辐射校正、图像拼接、分割和数据融合,并比较了三种主要的参数反演建模方法:基于植被指数的方法、数据驱动的方法和基于物理的方法。总结了不同作物和时空尺度上的代表性应用案例。此外,该综述探讨了影响监测性能的因素,如作物生长阶段、空间分辨率、光照和气象条件以及模型的通用性。尽管取得了重大进展,但目前的局限性包括传感器通用性不足、数据处理链劳动强度大以及模型可扩展性有限。最后,该综述概述了未来的发展方向,包括边缘智能的集成、混合物理-数据建模以及多源三维协同传感。这项工作旨在为推进精准农业中基于无人机的遥感技术提供理论见解和技术支持。