Suppr超能文献

使用冠状动脉计算机断层扫描血管造影术对有心血管危险因素的医院员工进行筛查。

Use of Coronary Computed Tomography Angiography to Screen Hospital Employees with Cardiovascular Risk Factors.

作者信息

Li Po-Yi, Chen Ru-Yih, Wu Fu-Zong, Mar Guang-Yuan, Wu Ming-Ting, Wang Fu-Wei

机构信息

Department of Family Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.

Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.

出版信息

Int J Environ Res Public Health. 2021 May 20;18(10):5462. doi: 10.3390/ijerph18105462.

Abstract

The objective of this study was to determine how coronary computed tomography angiography (CCTA) can be employed to detect coronary artery disease in hospital employees, enabling early treatment and minimizing damage. All employees of our hospital were assessed using the Framingham Risk Score. Those with a 10-year risk of myocardial infarction or death of >10% were offered CCTA; the Coronary Artery Disease Reporting and Data System (CAD-RADS) score was the outcome. A total of 3923 hospital employees were included, and the number who had received CCTA was 309. Among these 309, 31 (10.0%) had a CAD-RADS score of 3-5, with 10 of the 31 (32.3%) requiring further cardiac catheterization; 161 (52.1%) had a score of 1-2; and 117 (37.9%) had a score of 0. In the multivariate logistic regression, only age of ≥ 55 years ( < 0.05), hypertension ( < 0.05), and hyperlipidemia ( < 0.05) were discovered to be significant risk factors for a CAD-RADS score of 3-5. Thus, regular and adequate control of chronic diseases is critical for patients, and more studies are required to be confirmed if there are more significant risk factors.

摘要

本研究的目的是确定冠状动脉计算机断层扫描血管造影(CCTA)如何用于检测医院员工的冠状动脉疾病,以便早期治疗并将损害降至最低。我们医院的所有员工均使用弗雷明汉风险评分进行评估。心肌梗死或死亡10年风险>10%的员工接受CCTA检查;结果采用冠状动脉疾病报告和数据系统(CAD-RADS)评分。共纳入3923名医院员工,接受CCTA检查的有309人。在这309人中,31人(10.0%)的CAD-RADS评分为3-5,其中31人中有10人(32.3%)需要进一步进行心导管检查;161人(52.1%)的评分为1-2;117人(37.9%)的评分为0。在多因素逻辑回归分析中,仅发现年龄≥55岁(<0.05)、高血压(<0.05)和高脂血症(<0.05)是CAD-RADS评分为3-5的显著危险因素。因此,对患者而言,定期且充分地控制慢性病至关重要,若存在更多显著危险因素,还需要更多研究来证实。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7421/8160889/c745d9854502/ijerph-18-05462-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验