Suppr超能文献

M 型硫氧还蛋白通过与 PGRL1 形成二硫键连接的复合物来调节 PGR5/PGRL1 依赖性途径。

M-Type Thioredoxins Regulate the PGR5/PGRL1-Dependent Pathway by Forming a Disulfide-Linked Complex with PGRL1.

机构信息

Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-Ku, Kyoto 603-8555, Japan.

Center for Plant Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-Ku, Kyoto 603-8555, Japan.

出版信息

Plant Cell. 2020 Dec;32(12):3866-3883. doi: 10.1105/tpc.20.00304. Epub 2020 Oct 9.

Abstract

In addition to linear electron transport, photosystem I cyclic electron transport (PSI-CET) contributes to photosynthesis and photoprotection. In Arabidopsis (), PSI-CET consists of two partially redundant pathways, one of which is the PROTON GRADIENT REGULATION5 (PGR5)/PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1 (PGRL1)-dependent pathway. Although the physiological significance of PSI-CET is widely recognized, the regulatory mechanism behind these pathways remains largely unknown. Here, we report on the regulation of the PGR5/PGRL1-dependent pathway by the -type thioredoxins (Trx ). Genetic and phenotypic characterizations of multiple mutants indicated the physiological interaction between Trx and the PGR5/PGRL1-dependent pathway in vivo. Using purified Trx proteins and ruptured chloroplasts, in vitro, we showed that the reduced form of Trx specifically decreased the PGR5/PGRL1-dependent plastoquinone reduction. In planta, Trx 4 directly interacted with PGRL1 via disulfide complex formation. Analysis of the transgenic plants expressing PGRL1 Cys variants demonstrated that Cys-123 of PGRL1 is required for Trx 4-PGRL1 complex formation. Furthermore, the Trx 4-PGRL1 complex was transiently dissociated during the induction of photosynthesis. We propose that Trx directly regulates the PGR5/PGRL1-dependent pathway by complex formation with PGRL1.

摘要

除了线性电子传递,光系统 I 环式电子传递(PSI-CET)有助于光合作用和光保护。在拟南芥()中,PSI-CET 由两条部分冗余的途径组成,其中一条途径是质子梯度调节 5(PGR5)/PGR5 样光合作用表型 1(PGRL1)依赖性途径。尽管 PSI-CET 的生理意义得到了广泛的认可,但这些途径背后的调节机制在很大程度上仍然未知。在这里,我们报告了 -型硫氧还蛋白(Trx )对 PGR5/PGRL1 依赖性途径的调节。多个突变体的遗传和表型特征表明 Trx 和 PGR5/PGRL1 依赖性途径在体内存在生理相互作用。使用纯化的 Trx 蛋白和破裂的叶绿体,我们在体外表明,Trx 的还原形式特异性降低了 PGR5/PGRL1 依赖性质体醌还原。在植物中,Trx 4 通过二硫键复合物的形成与 PGRL1 直接相互作用。对表达 PGRL1 Cys 变体的转基因植物的分析表明,PGRL1 的 Cys-123 对于 Trx 4-PGRL1 复合物的形成是必需的。此外,在光合作用诱导过程中,Trx 4-PGRL1 复合物会短暂解离。我们提出,Trx 通过与 PGRL1 形成复合物直接调节 PGR5/PGRL1 依赖性途径。

相似文献

1
M-Type Thioredoxins Regulate the PGR5/PGRL1-Dependent Pathway by Forming a Disulfide-Linked Complex with PGRL1.
Plant Cell. 2020 Dec;32(12):3866-3883. doi: 10.1105/tpc.20.00304. Epub 2020 Oct 9.
2
Thioredoxin m4 controls photosynthetic alternative electron pathways in Arabidopsis.
Plant Physiol. 2013 Jan;161(1):508-20. doi: 10.1104/pp.112.207019. Epub 2012 Nov 14.
3
PGR5-PGRL1-Dependent Cyclic Electron Transport Modulates Linear Electron Transport Rate in Arabidopsis thaliana.
Mol Plant. 2016 Feb 1;9(2):271-288. doi: 10.1016/j.molp.2015.12.001. Epub 2015 Dec 11.
4
Cyclic Electron Transport around PSI Contributes to Photosynthetic Induction with Thioredoxin .
Plant Physiol. 2020 Nov;184(3):1291-1302. doi: 10.1104/pp.20.00741. Epub 2020 Sep 11.
7
Contribution of NDH-dependent cyclic electron transport around photosystem I to the generation of proton motive force in the weak mutant allele of pgr5.
Biochim Biophys Acta Bioenerg. 2019 May 1;1860(5):369-374. doi: 10.1016/j.bbabio.2019.03.003. Epub 2019 Mar 13.
8
PROTON GRADIENT REGULATION 5 supports linear electron flow to oxidize photosystem I.
Physiol Plant. 2018 Nov;164(3):337-348. doi: 10.1111/ppl.12723. Epub 2018 Jul 19.

引用本文的文献

1
Nitric Oxide and Melatonin Cross Talk on Photosynthetic Machinery.
Molecules. 2025 May 13;30(10):2148. doi: 10.3390/molecules30102148.
2
Thioredoxin A regulates protein synthesis to maintain carbon and nitrogen partitioning in cyanobacteria.
Plant Physiol. 2024 Jul 31;195(4):2921-2936. doi: 10.1093/plphys/kiae101.
3
Overexpression of thioredoxin-like protein ACHT2 leads to negative feedback control of photosynthesis in Arabidopsis thaliana.
J Plant Res. 2024 May;137(3):445-453. doi: 10.1007/s10265-024-01519-2. Epub 2024 Feb 17.
5
The impact of light and thioredoxins on the plant thiol-disulfide proteome.
Plant Physiol. 2024 May 31;195(2):1536-1560. doi: 10.1093/plphys/kiad669.
6
Adjustment of light-responsive NADP dynamics in chloroplasts by stromal pH.
Nat Commun. 2023 Nov 6;14(1):7148. doi: 10.1038/s41467-023-42995-9.
7
NTRC and thioredoxins m1/m2 underpin the light acclimation of plants on proteome and metabolome levels.
Plant Physiol. 2024 Jan 31;194(2):982-1005. doi: 10.1093/plphys/kiad535.
8
x- and y-type thioredoxins maintain redox homeostasis on photosystem I acceptor side under fluctuating light.
Plant Physiol. 2023 Nov 22;193(4):2498-2512. doi: 10.1093/plphys/kiad466.
9
Current Insights into the Redox Regulation Network in Plant Chloroplasts.
Plant Cell Physiol. 2023 Jul 17;64(7):704-715. doi: 10.1093/pcp/pcad049.

本文引用的文献

1
Regulation of cyclic electron flow by chloroplast NADPH-dependent thioredoxin system.
Plant Direct. 2018 Nov 7;2(11):e00093. doi: 10.1002/pld3.93. eCollection 2018 Nov.
2
Chloroplast Redox Regulatory Mechanisms in Plant Adaptation to Light and Darkness.
Front Plant Sci. 2019 Apr 4;10:380. doi: 10.3389/fpls.2019.00380. eCollection 2019.
3
PGR5-Dependent Cyclic Electron Flow Protects Photosystem I under Fluctuating Light at Donor and Acceptor Sides.
Plant Physiol. 2019 Feb;179(2):588-600. doi: 10.1104/pp.18.01343. Epub 2018 Nov 21.
4
FdC1 and Leaf-Type Ferredoxins Channel Electrons From Photosystem I to Different Downstream Electron Acceptors.
Front Plant Sci. 2018 Apr 4;9:410. doi: 10.3389/fpls.2018.00410. eCollection 2018.
7
Thioredoxins Play a Crucial Role in Dynamic Acclimation of Photosynthesis in Fluctuating Light.
Mol Plant. 2017 Jan 9;10(1):168-182. doi: 10.1016/j.molp.2016.11.012. Epub 2016 Dec 8.
9
PTOX Mediates Novel Pathways of Electron Transport in Etioplasts of Arabidopsis.
Mol Plant. 2016 Sep 6;9(9):1240-1259. doi: 10.1016/j.molp.2016.06.008. Epub 2016 Jun 25.
10
Two distinct redox cascades cooperatively regulate chloroplast functions and sustain plant viability.
Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):E3967-76. doi: 10.1073/pnas.1604101113. Epub 2016 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验