Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-Ku, Kyoto 603-8555, Japan.
Center for Plant Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-Ku, Kyoto 603-8555, Japan.
Plant Cell. 2020 Dec;32(12):3866-3883. doi: 10.1105/tpc.20.00304. Epub 2020 Oct 9.
In addition to linear electron transport, photosystem I cyclic electron transport (PSI-CET) contributes to photosynthesis and photoprotection. In Arabidopsis (), PSI-CET consists of two partially redundant pathways, one of which is the PROTON GRADIENT REGULATION5 (PGR5)/PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1 (PGRL1)-dependent pathway. Although the physiological significance of PSI-CET is widely recognized, the regulatory mechanism behind these pathways remains largely unknown. Here, we report on the regulation of the PGR5/PGRL1-dependent pathway by the -type thioredoxins (Trx ). Genetic and phenotypic characterizations of multiple mutants indicated the physiological interaction between Trx and the PGR5/PGRL1-dependent pathway in vivo. Using purified Trx proteins and ruptured chloroplasts, in vitro, we showed that the reduced form of Trx specifically decreased the PGR5/PGRL1-dependent plastoquinone reduction. In planta, Trx 4 directly interacted with PGRL1 via disulfide complex formation. Analysis of the transgenic plants expressing PGRL1 Cys variants demonstrated that Cys-123 of PGRL1 is required for Trx 4-PGRL1 complex formation. Furthermore, the Trx 4-PGRL1 complex was transiently dissociated during the induction of photosynthesis. We propose that Trx directly regulates the PGR5/PGRL1-dependent pathway by complex formation with PGRL1.
除了线性电子传递,光系统 I 环式电子传递(PSI-CET)有助于光合作用和光保护。在拟南芥()中,PSI-CET 由两条部分冗余的途径组成,其中一条途径是质子梯度调节 5(PGR5)/PGR5 样光合作用表型 1(PGRL1)依赖性途径。尽管 PSI-CET 的生理意义得到了广泛的认可,但这些途径背后的调节机制在很大程度上仍然未知。在这里,我们报告了 -型硫氧还蛋白(Trx )对 PGR5/PGRL1 依赖性途径的调节。多个突变体的遗传和表型特征表明 Trx 和 PGR5/PGRL1 依赖性途径在体内存在生理相互作用。使用纯化的 Trx 蛋白和破裂的叶绿体,我们在体外表明,Trx 的还原形式特异性降低了 PGR5/PGRL1 依赖性质体醌还原。在植物中,Trx 4 通过二硫键复合物的形成与 PGRL1 直接相互作用。对表达 PGRL1 Cys 变体的转基因植物的分析表明,PGRL1 的 Cys-123 对于 Trx 4-PGRL1 复合物的形成是必需的。此外,在光合作用诱导过程中,Trx 4-PGRL1 复合物会短暂解离。我们提出,Trx 通过与 PGRL1 形成复合物直接调节 PGR5/PGRL1 依赖性途径。