Suppr超能文献

解读基因信息:机器学习助力临床分层与精准肿瘤学的蓬勃发展

Making Sense of Genetic Information: The Promising Evolution of Clinical Stratification and Precision Oncology Using Machine Learning.

作者信息

Baptiste Mahaly, Moinuddeen Sarah Shireen, Soliz Courtney Lace, Ehsan Hashimul, Kaneko Gen

机构信息

School of Arts & Sciences, University of Houston-Victoria, Victoria, TX 77901, USA.

出版信息

Genes (Basel). 2021 May 12;12(5):722. doi: 10.3390/genes12050722.

Abstract

Precision medicine is a medical approach to administer patients with a tailored dose of treatment by taking into consideration a person's variability in genes, environment, and lifestyles. The accumulation of omics big sequence data led to the development of various genetic databases on which clinical stratification of high-risk populations may be conducted. In addition, because cancers are generally caused by tumor-specific mutations, large-scale systematic identification of single nucleotide polymorphisms (SNPs) in various tumors has propelled significant progress of tailored treatments of tumors (i.e., precision oncology). Machine learning (ML), a subfield of artificial intelligence in which computers learn through experience, has a great potential to be used in precision oncology chiefly to help physicians make diagnostic decisions based on tumor images. A promising venue of ML in precision oncology is the integration of all available data from images to multi-omics big data for the holistic care of patients and high-risk healthy subjects. In this review, we provide a focused overview of precision oncology and ML with attention to breast cancer and glioma as well as the Bayesian networks that have the flexibility and the ability to work with incomplete information. We also introduce some state-of-the-art attempts to use and incorporate ML and genetic information in precision oncology.

摘要

精准医学是一种医疗方法,通过考虑个体在基因、环境和生活方式方面的差异,为患者提供量身定制的治疗剂量。组学大数据序列的积累推动了各种基因数据库的发展,基于这些数据库可以对高危人群进行临床分层。此外,由于癌症通常由肿瘤特异性突变引起,对各种肿瘤中的单核苷酸多态性(SNP)进行大规模系统鉴定推动了肿瘤个性化治疗(即精准肿瘤学)的重大进展。机器学习(ML)是人工智能的一个子领域,计算机通过经验进行学习,在精准肿瘤学中具有巨大的应用潜力,主要用于帮助医生基于肿瘤图像做出诊断决策。机器学习在精准肿瘤学中的一个有前景的应用方向是将从图像到多组学大数据的所有可用数据整合起来,以实现对患者和高危健康受试者的全面护理。在这篇综述中,我们重点概述了精准肿瘤学和机器学习,关注乳腺癌和神经胶质瘤,以及具有灵活性且能够处理不完整信息的贝叶斯网络。我们还介绍了一些在精准肿瘤学中使用和整合机器学习与遗传信息的前沿尝试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21a1/8151328/df7723808322/genes-12-00722-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验