Department of Biology, University of Texas at San Antonio, BSB 2.03.24, One UTSA Circle, San Antonio, TX, USA.
Neuroscience Institute, University of Texas at San Antonio, San Antonio, TX, USA.
J Neurooncol. 2020 Jan;146(1):1-7. doi: 10.1007/s11060-019-03369-8. Epub 2019 Dec 18.
Multidisciplinary studies for glial tumors has produced an enormous amount of information including imaging, histology, and a large cohort of molecular data (i.e. genomics, epigenomics, metabolomics, proteomics, etc.). The big data resources are made possible through open access that offers great potential for new biomarker or therapeutic intervention via deep-learning and/or machine learning for integrated multi-omics analysis. An equally important effort to define the hallmarks of glial tumors will also advance precision neuro-oncology and inform patient-specific therapeutics. This review summarizes past studies regarding tumor classification, hallmarks of cancer, and hypothetical mechanisms. Leveraging on advanced big data approaches and ongoing cross-disciplinary endeavors, this review also discusses how to integrate multiple layers of big data toward the goal of precision medicine.
In addition to basic research of cancer biology, the results from integrated multi-omics analysis will highlight biological processes and potential candidates as biomarkers or therapeutic targets. Ultimately, these collective resources built upon an armamentarium of accessible data can re-form clinical and molecular data to stratify patient-tailored therapy.
We envision that a comprehensive understanding of the link between molecular signatures, tumor locations, and patients' history will identify a molecular taxonomy of glial tumors to advance the improvements in early diagnosis, prevention, and treatment.
神经胶质肿瘤的多学科研究产生了大量信息,包括影像学、组织学和大量分子数据(即基因组学、表观基因组学、代谢组学、蛋白质组学等)。通过开放获取,大数据资源成为可能,这为通过深度学习和/或机器学习进行综合多组学分析,寻找新的生物标志物或治疗干预提供了巨大的潜力。定义神经胶质肿瘤特征的同等重要的努力也将推进精准神经肿瘤学,并为患者特异性治疗提供信息。这篇综述总结了过去关于肿瘤分类、癌症特征和假设机制的研究。利用先进的大数据方法和正在进行的跨学科努力,本文还讨论了如何整合多个层次的大数据,以实现精准医学的目标。
除了癌症生物学的基础研究外,综合多组学分析的结果将突出生物过程和潜在的候选生物标志物或治疗靶点。最终,这些基于可访问数据的集体资源可以重新构建临床和分子数据,以对患者进行个性化治疗分层。
我们设想,对分子特征、肿瘤位置和患者病史之间的联系的全面理解,将确定神经胶质肿瘤的分子分类法,以促进早期诊断、预防和治疗的改进。