Suppr超能文献

空间程序性死亡配体1(PD-L1)表达与肿瘤免疫微环境的整合在预测尿路上皮癌患者预后方面优于标准PD-L1评分。

Integration of Spatial PD-L1 Expression with the Tumor Immune Microenvironment Outperforms Standard PD-L1 Scoring in Outcome Prediction of Urothelial Cancer Patients.

作者信息

Weyerer Veronika, Strissel Pamela L, Strick Reiner, Sikic Danijel, Geppert Carol I, Bertz Simone, Lange Fabienne, Taubert Helge, Wach Sven, Breyer Johannes, Bolenz Christian, Erben Philipp, Schmitz-Draeger Bernd J, Wullich Bernd, Hartmann Arndt, Eckstein Markus

机构信息

Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Krankenhausstr. 8-10, 91054 Erlangen, Germany.

Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany.

出版信息

Cancers (Basel). 2021 May 12;13(10):2327. doi: 10.3390/cancers13102327.

Abstract

BACKGROUND

Immune therapy has gained significant importance in managing urothelial cancer. The value of PD-L1 remains a matter of controversy, thus requiring an in-depth analysis of its biological and clinical relevance.

METHODS

A total of 193 tumors of muscle-invasive bladder cancer patients (MIBC) were assessed with four PD-L1 assays. PD-L1 scoring results were correlated with data from a comprehensive digital-spatial immune-profiling panel using descriptive statistics, hierarchical clustering and uni-/multivariable survival analyses.

RESULTS

PD-L1 scoring algorithms are heterogeneous (agreements from 63.1% to 87.7%), and stems from different constellations of immune and tumor cells (IC/TC). While Ventana IC5% algorithm identifies tumors with high inflammation and favorable baseline prognosis, CPS10 and the TCarea25%/ICarea25% algorithm identify tumors with TC and IC expression. Spatially organized immune phenotypes, which correlate either with high PD-L1 IC expression and favorable prognosis or constitutive PD-L1 TC expression and poor baseline prognosis, cannot be resolved properly by PD-L1 algorithms. PD-L1 negative tumors with relevant immune infiltration can be detected by sTILs scoring on HE slides and digital CD8 scoring.

CONCLUSIONS

Contemporary PD-L1 scoring algorithms are not sufficient to resolve spatially distributed MIBC immune phenotypes and their clinical implications. A more comprehensive view of immune phenotypes along with the integration of spatial PD-L1 expression on IC and TC is necessary in order to stratify patients for ICI.

摘要

背景

免疫疗法在尿路上皮癌的治疗中已变得极为重要。PD-L1的价值仍存在争议,因此需要对其生物学和临床相关性进行深入分析。

方法

使用四种PD-L1检测方法对193例肌肉浸润性膀胱癌患者(MIBC)的肿瘤进行评估。通过描述性统计、层次聚类以及单变量/多变量生存分析,将PD-L1评分结果与来自全面数字空间免疫图谱面板的数据相关联。

结果

PD-L1评分算法具有异质性(一致性从63.1%到87.7%),且源于免疫细胞和肿瘤细胞(IC/TC)的不同组合。虽然Ventana IC5%算法可识别出具有高炎症反应和良好基线预后的肿瘤,但CPS10以及TCarea25%/ICarea25%算法可识别出具有TC和IC表达的肿瘤。与高PD-L1 IC表达和良好预后相关的空间组织化免疫表型,或与组成性PD-L1 TC表达和不良基线预后相关的免疫表型,无法通过PD-L1算法得到妥善解析。通过HE玻片上的sTILs评分和数字CD8评分可检测到具有相关免疫浸润的PD-L1阴性肿瘤。

结论

当代PD-L1评分算法不足以解析空间分布的MIBC免疫表型及其临床意义。为了对ICI治疗的患者进行分层,有必要对免疫表型有更全面的认识,并整合IC和TC上的空间PD-L1表达情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/070f/8150350/2c3ac3e0843c/cancers-13-02327-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验