Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France.
Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK.
Int J Mol Sci. 2021 May 7;22(9):4957. doi: 10.3390/ijms22094957.
Peptidoglycan recognition proteins (PGRPs) are ubiquitous among animals and play pivotal functions in insect immunity. Non-catalytic PGRPs are involved in the activation of immune pathways by binding to the peptidoglycan (PGN), whereas amidase PGRPs are capable of cleaving the PGN into non-immunogenic compounds. PGRP-LB belongs to the amidase PGRPs and downregulates the immune deficiency (IMD) pathway by cleaving -2,6-diaminopimelic (-DAP or DAP)-type PGN. While the recognition process is well analyzed for the non-catalytic PGRPs, little is known about the enzymatic mechanism for the amidase PGRPs, despite their essential function in immune homeostasis. Here, we analyzed the specific activity of different isoforms of PGRP-LB towards various PGN substrates to understand their specificity and role in immunity. We show that these isoforms have similar activity towards the different compounds. To analyze the mechanism of the amidase activity, we performed site directed mutagenesis and solved the X-ray structures of wild-type PGRP-LB and its mutants, with one of these structures presenting a protein complexed with the tracheal cytotoxin (TCT), a muropeptide derived from the PGN. Only the Y78F mutation abolished the PGN cleavage while other mutations reduced the activity solely. Together, our findings suggest the dynamic role of the residue Y78 in the amidase mechanism by nucleophilic attack through a water molecule to the carbonyl group of the amide function destabilized by Zn.
肽聚糖识别蛋白(PGRPs)在动物中普遍存在,在昆虫免疫中发挥关键作用。非催化型 PGRPs 通过与肽聚糖(PGN)结合而参与免疫途径的激活,而 amidase PGRPs 能够将 PGN 切割成非免疫原性化合物。PGRP-LB 属于 amidase PGRPs,通过切割 -2,6-二氨基庚二酸(-DAP 或 DAP)型 PGN 来下调免疫缺陷(IMD)途径。虽然非催化型 PGRPs 的识别过程已经得到很好的分析,但 amidase PGRPs 的酶促机制知之甚少,尽管它们在免疫稳态中具有重要功能。在这里,我们分析了 PGRP-LB 的不同同工型对各种 PGN 底物的特定活性,以了解它们在免疫中的特异性和作用。我们表明,这些同工型对不同化合物具有相似的活性。为了分析 amidase 活性的机制,我们进行了定点突变,并解决了野生型 PGRP-LB 及其突变体的 X 射线结构,其中一个结构呈现出与气管细胞毒素(TCT)复合的蛋白质,TCT 是源自 PGN 的肽聚糖片段。只有 Y78F 突变会使 PGN 切割失活,而其他突变仅降低活性。总之,我们的研究结果表明,残基 Y78 在 amidase 机制中通过亲核攻击通过水分子对酰胺功能的羰基起作用,这种攻击通过 Zn 不稳定化,从而发挥动态作用。