College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642, China.
Sensors (Basel). 2021 May 7;21(9):3251. doi: 10.3390/s21093251.
Instance segmentation is an accurate and reliable method to segment adhesive pigs' images, and is critical for providing health and welfare information on individual pigs, such as body condition score, live weight, and activity behaviors in group-housed pig environments. In this paper, a PigMS R-CNN framework based on mask scoring R-CNN (MS R-CNN) is explored to segment adhesive pig areas in group-pig images, to separate the identification and location of group-housed pigs. The PigMS R-CNN consists of three processes. First, a residual network of 101-layers, combined with the feature pyramid network (FPN), is used as a feature extraction network to obtain feature maps for input images. Then, according to these feature maps, the region candidate network generates the regions of interest (RoIs). Finally, for each RoI, we can obtain the location, classification, and segmentation results of detected pigs through the regression and category, and mask three branches from the PigMS R-CNN head network. To avoid target pigs being missed and error detections in overlapping or stuck areas of group-housed pigs, the PigMS R-CNN framework uses soft non-maximum suppression (soft-NMS) by replacing the traditional NMS to conduct post-processing selected operation of pigs. The MS R-CNN framework with traditional NMS obtains results with an F1 of 0.9228. By setting the soft-NMS threshold to 0.7 on PigMS R-CNN, detection of the target pigs achieves an F1 of 0.9374. The work explores a new instance segmentation method for adhesive group-housed pig images, which provides valuable exploration for vision-based, real-time automatic pig monitoring and welfare evaluation.
实例分割是一种准确可靠的分割黏附猪图像的方法,对于提供个体猪的健康和福利信息至关重要,例如在群体饲养猪环境中的身体状况评分、活体重量和活动行为。在本文中,探索了一种基于掩模评分 R-CNN(MS R-CNN)的 PigMS R-CNN 框架,用于分割群体猪图像中的黏附猪区域,以分离群体饲养猪的识别和定位。PigMS R-CNN 由三个过程组成。首先,使用 101 层残差网络,结合特征金字塔网络(FPN),作为特征提取网络,以获取输入图像的特征图。然后,根据这些特征图,区域候选网络生成感兴趣区域(RoI)。最后,对于每个 RoI,我们可以通过回归和类别从 PigMS R-CNN 头部网络获得检测到的猪的位置、分类和分割结果。为了避免目标猪在群体饲养猪的重叠或黏附区域中被遗漏和错误检测,PigMS R-CNN 框架通过使用软非极大值抑制(soft-NMS)替换传统 NMS 来对猪进行后处理选择操作。使用传统 NMS 的 MS R-CNN 框架获得的 F1 为 0.9228。通过将 soft-NMS 阈值设置为 PigMS R-CNN 上的 0.7,目标猪的检测实现了 0.9374 的 F1。这项工作探索了一种新的黏附群体饲养猪图像的实例分割方法,为基于视觉的实时自动猪监测和福利评估提供了有价值的探索。