Suppr超能文献

基于深度学习的掩模评分实例分割技术分析群养猪中的猪姿态。

Analysis of pig posture detection in group-housed pigs using deep learning-based mask scoring instance segmentation.

机构信息

ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, India.

出版信息

Anim Sci J. 2024 Jan-Dec;95(1):e13975. doi: 10.1111/asj.13975.

Abstract

Pig posture is closely linked with livestock health and welfare. There has been significant interest among researchers in using deep learning techniques for pig posture detection. However, this task is challenging due to variations in image angles and times, as well as the presence of multiple pigs in a single image. In this study, we explore an object detection and segmentation algorithm based on instance segmentation scoring to detect different pig postures (sternal lying, lateral lying, walking, and sitting) and segment pig areas in group images, thereby enabling the identification of individual pig postures within a group. The algorithm combines a residual network with 50 layers and a feature pyramid network to extract feature maps from input images. These feature maps are then used to generate regions of interest (RoI) using a region candidate network. For each RoI, the algorithm performs regression to determine the location, classification, and segmentation of each pig posture. To address challenges such as missing targets and error detections among overlapping pigs in group housing, non-maximum suppression (NMS) is used with a threshold of 0.7. Through extensive hyperparameter analysis, a learning rate of 0.01, a batch size of 512, and 4 images per batch offer superior performance, with accuracy surpassing 96%. Similarly, the mean average precision (mAP) exceeds 83% for object detection and instance segmentation under these settings. Additionally, we compare the method with the faster R-CNN object detection model. Further, execution times on different processing units considering various hyperparameters and iterations have been analyzed.

摘要

猪的姿势与家畜的健康和福利密切相关。研究人员对使用深度学习技术进行猪姿势检测表现出了浓厚的兴趣。然而,由于图像角度和时间的变化,以及单个图像中存在多只猪,这项任务具有挑战性。在这项研究中,我们探索了一种基于实例分割评分的目标检测和分割算法,用于检测不同的猪姿势(胸骨卧位、侧卧、行走和坐姿)并分割群组图像中的猪区域,从而能够识别群组中的个体猪姿势。该算法结合了 50 层残差网络和特征金字塔网络,从输入图像中提取特征图。然后,使用区域候选网络生成感兴趣区域(RoI)。对于每个 RoI,算法执行回归以确定每个猪姿势的位置、分类和分割。为了解决群体饲养中重叠猪之间目标缺失和错误检测等挑战,使用非极大值抑制(NMS)和阈值为 0.7。通过广泛的超参数分析,学习率为 0.01、批量大小为 512 和每批 4 张图像提供了卓越的性能,准确率超过 96%。同样,在这些设置下,对象检测和实例分割的平均精度(mAP)超过 83%。此外,我们还将该方法与更快的 R-CNN 目标检测模型进行了比较。进一步分析了考虑不同超参数和迭代次数的不同处理单元上的执行时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验