Suppr超能文献

一种用于个体猪检测的新型改进 YOLOv3-SC 模型。

A Novel Improved YOLOv3-SC Model for Individual Pig Detection.

机构信息

School of Software, Shanxi Agricultural University, Jinzhong 030801, China.

出版信息

Sensors (Basel). 2022 Nov 15;22(22):8792. doi: 10.3390/s22228792.

Abstract

Pork is the most widely consumed meat product in the world, and achieving accurate detection of individual pigs is of great significance for intelligent pig breeding and health monitoring. Improved pig detection has important implications for improving pork production and quality, as well as economics. However, most of the current approaches are based on manual labor, resulting in unfeasible performance. In order to improve the efficiency and effectiveness of individual pig detection, this paper describes the development of an attention module enhanced YOLOv3-SC model (YOLOv3-SPP-CBAM. SPP denotes the Spatial Pyramid Pooling module and CBAM indicates the Convolutional Block Attention Module). Specifically, leveraging the attention module, the network will extract much richer feature information, leading the improved performance. Furthermore, by integrating the SPP structured network, multi-scale feature fusion can be achieved, which makes the network more robust. On the constructed dataset of 4019 samples, the experimental results showed that the YOLOv3-SC network achieved 99.24% mAP in identifying individual pigs with a detection time of 16 ms. Compared with the other popular four models, including YOLOv1, YOLOv2, Faster-RCNN, and YOLOv3, the mAP of pig identification was improved by 2.31%, 1.44%, 1.28%, and 0.61%, respectively. The YOLOv3-SC proposed in this paper can achieve accurate individual detection of pigs. Consequently, this novel proposed model can be employed for the rapid detection of individual pigs on farms, and provides new ideas for individual pig detection.

摘要

猪肉是世界上消费最广泛的肉类产品,准确检测个体猪对于智能养猪和健康监测具有重要意义。改进的猪检测对于提高猪肉产量和质量以及经济效益具有重要意义。然而,目前大多数方法都依赖于人工劳动,导致性能不可行。为了提高个体猪检测的效率和效果,本文描述了一种注意力模块增强的 YOLOv3-SC 模型(YOLOv3-SPP-CBAM 的发展。SPP 表示空间金字塔池化模块,CBAM 表示卷积块注意模块)。具体来说,利用注意力模块,网络将提取更丰富的特征信息,从而提高性能。此外,通过集成 SPP 结构网络,可以实现多尺度特征融合,使网络更加健壮。在构建的 4019 个样本数据集上进行的实验结果表明,YOLOv3-SC 网络在识别个体猪时的 mAP 达到 99.24%,检测时间为 16 毫秒。与其他四个流行的模型(包括 YOLOv1、YOLOv2、Faster-RCNN 和 YOLOv3)相比,猪识别的 mAP 分别提高了 2.31%、1.44%、1.28%和 0.61%。本文提出的 YOLOv3-SC 可以实现对个体猪的精确检测。因此,该新型模型可用于农场中个体猪的快速检测,为个体猪检测提供了新的思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1592/9697160/3459e04c96cd/sensors-22-08792-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验