Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand.
Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
Int J Mol Sci. 2021 May 10;22(9):5031. doi: 10.3390/ijms22095031.
Systemic inflammation, from gut translocation of organismal molecules, might worsen uremic complications in acute kidney injury (AKI). The monitoring of gut permeability integrity and/or organismal molecules in AKI might be clinically beneficial. Due to the less prominence of Candida albicans in human intestine compared with mouse gut, C. albicans were orally administered in bilateral nephrectomy (BiN) mice. Gut dysbiosis, using microbiome analysis, and gut permeability defect (gut leakage), which was determined by fluorescein isothiocyanate-dextran and intestinal tight-junction immunofluorescent staining, in mice with BiN-Candida was more severe than BiN without Candida. Additionally, profound gut leakage in BiN-Candida also resulted in gut translocation of lipopolysaccharide (LPS) and (1→3)-β-D-glucan (BG), the organismal components from gut contents, that induced more severe systemic inflammation than BiN without Candida. The co-presentation of LPS and BG in mouse serum enhanced inflammatory responses. As such, LPS with Whole Glucan Particle (WGP, a representative BG) induced more severe macrophage responses than LPS alone as determined by supernatant cytokines and gene expression of downstream signals (, and ). Meanwhile, WGP alone did not induced the responses. In parallel, WGP (with or without LPS), but not LPS alone, accelerated macrophage ATP production (extracellular flux analysis) through the upregulation of genes in mitochondria and glycolysis pathway (using RNA sequencing analysis), without the induction of cell activities. These data indicated a WGP pre-conditioning effect on cell energy augmentation. In conclusion, Candida in BiN mice accelerated gut translocation of BG that augmented cell energy status and enhanced pro-inflammatory macrophage responses. Hence, gut fungi and BG were associated with the enhanced systemic inflammation in acute uremia.
系统性炎症,源于机体分子从肠道易位,可能使急性肾损伤 (AKI) 的尿毒症并发症恶化。监测 AKI 中的肠道通透性完整性和/或机体分子可能具有临床益处。由于白色念珠菌在人类肠道中的存在不如在小鼠肠道中显著,因此在双侧肾切除术 (BiN) 小鼠中口服给予白色念珠菌。使用微生物组分析和肠道紧密连接免疫荧光染色来检测肠道通透性缺陷(肠道渗漏),BiN-白色念珠菌小鼠的肠道菌群失调和肠道通透性缺陷比 BiN 无白色念珠菌小鼠更为严重。此外,BiN-白色念珠菌中严重的肠道渗漏也导致来自肠道内容物的 LPS 和 (1→3)-β-D-葡聚糖 (BG) 等机体成分易位,引发比 BiN 无白色念珠菌更严重的全身性炎症。LPS 和 BG 在小鼠血清中的共同呈现增强了炎症反应。因此,与单独的 LPS 相比,作为 BG 代表的全葡聚糖颗粒 (WGP) 与 LPS 共同呈现时,诱导的巨噬细胞反应更为严重,这可通过上清液细胞因子和下游信号的基因表达来确定 (、和 )。同时,单独的 WGP 不会引起反应。同时,WGP(有或没有 LPS)但不是单独的 LPS,通过上调线粒体和糖酵解途径中的基因(使用 RNA 测序分析),加速了巨噬细胞的 ATP 产生(细胞外通量分析),而不会诱导细胞活性。这些数据表明 WGP 对细胞能量增加有预处理作用。总之,BiN 小鼠中的白色念珠菌加速了 BG 的肠道易位,从而增加了细胞能量状态,并增强了促炎巨噬细胞反应。因此,肠道真菌和 BG 与急性尿毒症中的增强全身炎症有关。