Suppr超能文献

通过自主水下航行器上的侧扫声纳进行高分辨率测绘,以表征和开发海底沙波中形成和迁移线索的拓扑结构、形态学及演化特征。

Towards Characterizing and Developing Formation and Migration Cues in Seafloor Sand Waves on Topology, Morphology, Evolution from High-Resolution Mapping via Side-Scan Sonar in Autonomous Underwater Vehicles.

作者信息

Nian Rui, Zang Lina, Geng Xue, Yu Fei, Ren Shidong, He Bo, Li Xishuang

机构信息

School of Information Science and Engineering, Ocean University of China, Qingdao 266000, China.

Key Laboratory of Marine Geology and Metallogeny, Ministry of Nature Resources of People's Republic of China, Qingdao 266061, China.

出版信息

Sensors (Basel). 2021 May 10;21(9):3283. doi: 10.3390/s21093283.

Abstract

Sand waves constitute ubiquitous geomorphology distribution in the ocean. In this paper, we quantitatively investigate the sand wave variation of topology, morphology, and evolution from the high-resolution mapping of a side scan sonar (SSS) in an Autonomous Underwater Vehicle (AUV), in favor of online sequential Extreme Learning Machine (OS-ELM). We utilize echo intensity directly derived from SSS to help accelerate detection and localization, denote a collection of Gaussian-type morphological templates, with one integrated matching criterion for similarity assessment, discuss the envelope demodulation, zero-crossing rate (ZCR), cross-correlation statistically, and estimate the specific morphological parameters. It is demonstrated that the sand wave detection rate could reach up to 95.61% averagely, comparable to deep learning such as MobileNet, but at a much higher speed, with the average test time of 0.0018 s, which is particularly superior for sand waves at smaller scales. The calculation of morphological parameters primarily infer a wave length range and composition ratio in all types of sand waves, implying the possible dominant direction of hydrodynamics. The proposed scheme permits to delicately and adaptively explore the submarine geomorphology of sand waves with online computation strategies and symmetrically integrate evidence of its spatio-temporal responses during formation and migration.

摘要

沙波是海洋中普遍存在的地貌分布。在本文中,我们利用自主水下航行器(AUV)搭载的侧扫声纳(SSS)进行高分辨率测绘,借助在线序列极限学习机(OS-ELM),对沙波的拓扑结构、形态及演化进行了定量研究。我们直接利用从SSS获取的回波强度来加速检测与定位,定义了一组高斯型形态模板,并采用一个综合匹配准则进行相似度评估,从统计学角度讨论了包络解调、过零率(ZCR)和互相关,还估算了具体的形态参数。结果表明,沙波检测率平均可达95.61%,与诸如MobileNet等深度学习方法相当,但速度要快得多,平均测试时间为0.0018秒,这对于较小尺度的沙波尤为优越。形态参数的计算主要推断出各类沙波的波长范围和组成比例,这暗示了水动力可能的主导方向。所提出的方案能够通过在线计算策略精细且自适应地探索沙波的海底地貌,并对称地整合其在形成和迁移过程中的时空响应证据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验