Suppr超能文献

ECNet:用于侧扫声纳图像分割的高效卷积网络

ECNet: Efficient Convolutional Networks for Side Scan Sonar Image Segmentation.

作者信息

Wu Meihan, Wang Qi, Rigall Eric, Li Kaige, Zhu Wenbo, He Bo, Yan Tianhong

机构信息

School of Information Science and Engineering, Ocean University of China, Qingdao, Shandong 266000, China.

School of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China.

出版信息

Sensors (Basel). 2019 Apr 29;19(9):2009. doi: 10.3390/s19092009.

Abstract

This paper presents a novel and practical convolutional neural network architecture to implement semantic segmentation for side scan sonar (SSS) image. As a widely used sensor for marine survey, SSS provides higher-resolution images of the seafloor and underwater target. However, for a large number of background pixels in SSS image, the imbalance classification remains an issue. What is more, the SSS images contain undesirable speckle noise and intensity inhomogeneity. We define and detail a network and training strategy that tackle these three important issues for SSS images segmentation. Our proposed method performs image-to-image prediction by leveraging fully convolutional neural networks and deeply-supervised nets. The architecture consists of an encoder network to capture context, a corresponding decoder network to restore full input-size resolution feature maps from low-resolution ones for pixel-wise classification and a single stream deep neural network with multiple side-outputs to optimize edge segmentation. We performed prediction time of our network on our dataset, implemented on a NVIDIA Jetson AGX Xavier, and compared it to other similar semantic segmentation networks. The experimental results show that the presented method for SSS image segmentation brings obvious advantages, and is applicable for real-time processing tasks.

摘要

本文提出了一种新颖且实用的卷积神经网络架构,用于实现侧扫声呐(SSS)图像的语义分割。作为海洋探测中广泛使用的传感器,SSS可提供海底和水下目标的高分辨率图像。然而,对于SSS图像中大量的背景像素,不平衡分类仍然是一个问题。此外,SSS图像还包含不良的斑点噪声和强度不均匀性。我们定义并详细阐述了一种网络和训练策略,以解决SSS图像分割中的这三个重要问题。我们提出的方法通过利用全卷积神经网络和深度监督网络进行图像到图像的预测。该架构由一个用于捕捉上下文的编码器网络、一个用于从低分辨率特征图恢复全输入尺寸分辨率特征图以进行逐像素分类的相应解码器网络,以及一个具有多个侧输出的单流深度神经网络组成,以优化边缘分割。我们在NVIDIA Jetson AGX Xavier上实现了我们的网络在数据集上的预测时间,并将其与其他类似的语义分割网络进行了比较。实验结果表明,所提出的SSS图像分割方法具有明显优势,适用于实时处理任务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a8a/6540294/afe763352b39/sensors-19-02009-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验