Suppr超能文献

关于无源随机接入信道的二进制信号压缩感知

On Compressed Sensing of Binary Signals for the Unsourced Random Access Channel.

作者信息

Romanov Elad, Ordentlich Or

机构信息

The Rachel and Selim Benin School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 919050, Israel.

出版信息

Entropy (Basel). 2021 May 14;23(5):605. doi: 10.3390/e23050605.

Abstract

Motivated by applications in unsourced random access, this paper develops a novel scheme for the problem of compressed sensing of binary signals. In this problem, the goal is to design a sensing matrix and a recovery algorithm, such that the sparse binary vector x can be recovered reliably from the measurements y=Ax+σz, where z is additive white Gaussian noise. We propose to design as a parity check matrix of a low-density parity-check code (LDPC) and to recover x from the measurements y using a Markov chain Monte Carlo algorithm, which runs relatively fast due to the sparse structure of . The performance of our scheme is comparable to state-of-the-art schemes, which use dense sensing matrices, while enjoying the advantages of using a sparse sensing matrix.

摘要

受无源随机接入应用的推动,本文针对二进制信号的压缩感知问题开发了一种新颖的方案。在这个问题中,目标是设计一个传感矩阵和一种恢复算法,使得稀疏二进制向量x能够从测量值y = Ax + σz中可靠地恢复出来,其中z是加性高斯白噪声。我们建议将A设计为低密度奇偶校验码(LDPC)的奇偶校验矩阵,并使用马尔可夫链蒙特卡罗算法从测量值y中恢复x,由于A的稀疏结构,该算法运行速度相对较快。我们方案的性能与使用密集传感矩阵的现有方案相当,同时还具有使用稀疏传感矩阵的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b44/8156401/4b473db1f49f/entropy-23-00605-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验