Suppr超能文献

信息传递与新陈代谢

Message Passing and Metabolism.

作者信息

Parr Thomas

机构信息

Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK.

出版信息

Entropy (Basel). 2021 May 14;23(5):606. doi: 10.3390/e23050606.

Abstract

Active inference is an increasingly prominent paradigm in theoretical biology. It frames the dynamics of living systems as if they were solving an inference problem. This rests upon their flow towards some (non-equilibrium) steady state-or equivalently, their maximisation of the Bayesian model evidence for an implicit probabilistic model. For many models, these self-evidencing dynamics manifest as messages passed among elements of a system. Such messages resemble synaptic communication at a neuronal network level but could also apply to other network structures. This paper attempts to apply the same formulation to biochemical networks. The chemical computation that occurs in regulation of metabolism relies upon sparse interactions between coupled reactions, where enzymes induce conditional dependencies between reactants. We will see that these reactions may be viewed as the movement of probability mass between alternative categorical states. When framed in this way, the master equations describing such systems can be reformulated in terms of their steady-state distribution. This distribution plays the role of a generative model, affording an inferential interpretation of the underlying biochemistry. Finally, we see that-in analogy with computational neurology and psychiatry-metabolic disorders may be characterized as false inference under aberrant prior beliefs.

摘要

主动推理是理论生物学中一个日益突出的范式。它将生命系统的动态过程描述为仿佛它们在解决一个推理问题。这基于它们朝着某种(非平衡)稳态流动,或者等效地,基于它们对一个隐式概率模型的贝叶斯模型证据的最大化。对于许多模型,这些自证动态表现为系统元素之间传递的信息。这种信息类似于神经网络层面的突触通信,但也可能适用于其他网络结构。本文试图将相同的公式应用于生化网络。代谢调节中发生的化学计算依赖于耦合反应之间的稀疏相互作用,其中酶在反应物之间诱导条件依赖性。我们将看到,这些反应可以被视为概率质量在替代分类状态之间的移动。当以这种方式构建时,描述此类系统的主方程可以根据其稳态分布重新表述。这种分布起到生成模型的作用,为基础生物化学提供了一种推理解释。最后,我们看到——类似于计算神经学和精神病学——代谢紊乱可以被表征为异常先验信念下的错误推理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4faf/8156486/f9ea12c8460f/entropy-23-00606-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验