Suppr超能文献

主动推理下运动的计算神经科学。

The computational neurology of movement under active inference.

机构信息

Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.

Faculty of Psychology and Center for Tactile Internet with Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany.

出版信息

Brain. 2021 Jul 28;144(6):1799-1818. doi: 10.1093/brain/awab085.

Abstract

We propose a computational neurology of movement based on the convergence of theoretical neurobiology and clinical neurology. A significant development in the former is the idea that we can frame brain function as a process of (active) inference, in which the nervous system makes predictions about its sensory data. These predictions depend upon an implicit predictive (generative) model used by the brain. This means neural dynamics can be framed as generating actions to ensure sensations are consistent with these predictions-and adjusting predictions when they are not. We illustrate the significance of this formulation for clinical neurology by simulating a clinical examination of the motor system using an upper limb coordination task. Specifically, we show how tendon reflexes emerge naturally under the right kind of generative model. Through simulated perturbations, pertaining to prior probabilities of this model's variables, we illustrate the emergence of hyperreflexia and pendular reflexes, reminiscent of neurological lesions in the corticospinal tract and cerebellum. We then turn to the computational lesions causing hypokinesia and deficits of coordination. This in silico lesion-deficit analysis provides an opportunity to revisit classic neurological dichotomies (e.g. pyramidal versus extrapyramidal systems) from the perspective of modern approaches to theoretical neurobiology-and our understanding of the neurocomputational architecture of movement control based on first principles.

摘要

我们提出了一种基于理论神经生物学和临床神经学融合的运动计算神经科学。前者的一个重要进展是,我们可以将大脑功能视为(主动)推理的过程,其中神经系统对其感觉数据做出预测。这些预测取决于大脑使用的隐含预测(生成)模型。这意味着神经动力学可以被表述为生成动作,以确保感觉与这些预测一致,并在不一致时调整预测。我们通过使用上肢协调任务模拟对运动系统的临床检查,来说明这种表述对临床神经学的意义。具体来说,我们展示了在正确的生成模型下,如何自然地出现腱反射。通过模拟与该模型变量的先验概率有关的扰动,我们说明了hyperreflexia 和 pendular reflexes 的出现,这让人联想到皮质脊髓束和小脑的神经病变。然后,我们转向引起运动减少和协调缺陷的计算性损伤。这种计算机损伤-缺陷分析为从现代理论神经生物学方法的角度重新审视经典的神经学二分法(例如,锥体外系统与锥体系)提供了机会——以及我们基于第一性原理对运动控制的神经计算架构的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ef0/8320263/6ca5d6cbd35e/awab085f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验