Suppr超能文献

新型冠状病毒肺炎的动态因果模型

Dynamic causal modelling of COVID-19.

作者信息

Friston Karl J, Parr Thomas, Zeidman Peter, Razi Adeel, Flandin Guillaume, Daunizeau Jean, Hulme Ollie J, Billig Alexander J, Litvak Vladimir, Moran Rosalyn J, Price Cathy J, Lambert Christian

机构信息

Wellcome Centre for Human Neuroimaging, University College London, London, WC1N 3BG, UK.

Turner Institute for Brain and Mental Health & Monash Biomedical Imaging, Monash University, Clayton, VIC, 3800, Australia.

出版信息

Wellcome Open Res. 2020 Aug 7;5:89. doi: 10.12688/wellcomeopenres.15881.2. eCollection 2020.

Abstract

This technical report describes a dynamic causal model of the spread of coronavirus through a population. The model is based upon ensemble or population dynamics that generate outcomes, like new cases and deaths over time. The purpose of this model is to quantify the uncertainty that attends predictions of relevant outcomes. By assuming suitable conditional dependencies, one can model the effects of interventions (e.g., social distancing) and differences among populations (e.g., herd immunity) to predict what might happen in different circumstances. Technically, this model leverages state-of-the-art variational (Bayesian) model inversion and comparison procedures, originally developed to characterise the responses of neuronal ensembles to perturbations. Here, this modelling is applied to epidemiological populations-to illustrate the kind of inferences that are supported and how the model can be optimised given timeseries data. Although the purpose of this paper is to describe a modelling protocol, the results illustrate some interesting perspectives on the current pandemic; for example, the nonlinear effects of herd immunity that speak to a self-organised mitigation process.

摘要

本技术报告描述了冠状病毒在人群中传播的动态因果模型。该模型基于生成结果(如随时间推移的新病例和死亡人数)的总体或群体动态。此模型的目的是量化与相关结果预测相关的不确定性。通过假设适当的条件依赖性,可以对干预措施(如社交距离)的效果和人群之间的差异(如群体免疫)进行建模,以预测不同情况下可能发生的情况。从技术上讲,该模型利用了最先进的变分(贝叶斯)模型反演和比较程序,这些程序最初是为了表征神经元群体对扰动的反应而开发的。在此,这种建模方法应用于流行病学人群,以说明所支持的推理类型以及如何根据时间序列数据优化模型。虽然本文的目的是描述一种建模协议,但结果展示了关于当前大流行的一些有趣观点;例如,群体免疫的非线性效应表明了一个自我组织的缓解过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e373/7432378/16c35a8e159b/wellcomeopenres-5-17779-g0000.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验