Suppr超能文献

基于人工智能的肺部疾病CT自动定量分析可预测COVID-19肺炎住院患者的不良预后。

Automated AI-Driven CT Quantification of Lung Disease Predicts Adverse Outcomes in Patients Hospitalized for COVID-19 Pneumonia.

作者信息

Chabi Marie Laure, Dana Ophélie, Kennel Titouan, Gence-Breney Alexia, Salvator Hélène, Ballester Marie Christine, Vasse Marc, Brun Anne Laure, Mellot François, Grenier Philippe A

机构信息

Department of Medical Imaging, Foch Hospital, 92150 Suresnes, France.

Department of Clinical Research and Innovation, Foch Hospital, 92150 Suresnes, France.

出版信息

Diagnostics (Basel). 2021 May 14;11(5):878. doi: 10.3390/diagnostics11050878.

Abstract

The purpose of our work was to assess the independent and incremental value of AI-derived quantitative determination of lung lesions extent on initial CT scan for the prediction of clinical deterioration or death in patients hospitalized with COVID-19 pneumonia. 323 consecutive patients (mean age 65 ± 15 years, 192 men), with laboratory-confirmed COVID-19 and an abnormal chest CT scan, were admitted to the hospital between March and December 2020. The extent of consolidation and all lung opacities were quantified on an initial CT scan using a 3D automatic AI-based software. The outcome was known for all these patients. 85 (26.3%) patients died or experienced clinical deterioration, defined as intensive care unit admission. In multivariate regression based on clinical, biological and CT parameters, the extent of all opacities, and extent of consolidation were independent predictors of adverse outcomes, as were diabetes, heart disease, C-reactive protein, and neutrophils/lymphocytes ratio. The association of CT-derived measures with clinical and biological parameters significantly improved the risk prediction ( = 0.049). Automated quantification of lung disease at CT in COVID-19 pneumonia is useful to predict clinical deterioration or in-hospital death. Its combination with clinical and biological data improves risk prediction.

摘要

我们这项工作的目的是评估人工智能在初次CT扫描时对新冠病毒肺炎住院患者肺部病变范围进行定量测定的独立和增量价值,以预测临床病情恶化或死亡情况。2020年3月至12月期间,323例实验室确诊为新冠病毒感染且胸部CT扫描异常的连续患者(平均年龄65±15岁,男性192例)入院治疗。使用基于人工智能的3D自动软件在初次CT扫描时对实变范围和所有肺部混浊进行定量分析。所有这些患者的转归情况均已知。85例(26.3%)患者死亡或出现临床病情恶化,定义为入住重症监护病房。在基于临床、生物学和CT参数的多变量回归分析中,所有混浊范围和实变范围是不良转归的独立预测因素,糖尿病、心脏病、C反应蛋白以及中性粒细胞/淋巴细胞比值也是如此。CT衍生测量值与临床和生物学参数的联合显著改善了风险预测(P=0.049)。在新冠病毒肺炎中,通过CT对肺部疾病进行自动定量分析有助于预测临床病情恶化或院内死亡。将其与临床和生物学数据相结合可改善风险预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/146f/8156322/ca912ddb0e04/diagnostics-11-00878-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验