Gandellini Paolo, Ciniselli Chiara Maura, Rancati Tiziana, Marenghi Cristina, Doldi Valentina, El Bezawy Rihan, Lecchi Mara, Claps Melanie, Catanzaro Mario, Avuzzi Barbara, Campi Elisa, Colecchia Maurizio, Badenchini Fabio, Verderio Paolo, Valdagni Riccardo, Zaffaroni Nadia
Department of Biosciences, University of Milan, 20133 Milan, Italy.
Bioinformatics and Biostatistics Unit, Department of Applied Research and Technological Development, Fondazione IRCSS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
Cancers (Basel). 2021 May 18;13(10):2433. doi: 10.3390/cancers13102433.
Active surveillance (AS) has evolved as a strategy alternative to radical treatments for very low risk and low-risk prostate cancer (PCa). However, current criteria for selecting AS patients are still suboptimal. Here, we performed an unprecedented analysis of the circulating miRNome to investigate whether specific miRNAs associated with disease reclassification can provide risk refinement to standard clinicopathological features for improving patient selection. The global miRNA expression profiles were assessed in plasma samples prospectively collected at baseline from 386 patients on AS included in three independent mono-institutional cohorts (training, testing and validation sets). A three-miRNA signature (, and ) was found to predict reclassification in all patient cohorts (training set: AUC 0.74, 95% CI 0.60-0.87, testing set: AUC 0.65, 95% CI 0.51-0.80, validation set: AUC 0.68, 95% CI 0.56-0.80). Importantly, the addition of the three-miRNA signature improved the performance of the clinical model including clinicopathological variables only (AUC 0.70, 95% CI 0.61-0.78 vs. 0.76, 95% CI 0.68-0.84). Overall, we trained, tested and validated a three-miRNA signature which, combined with selected clinicopathological variables, may represent a promising biomarker to improve on currently available clinicopathological risk stratification tools for a better selection of truly indolent PCa patients suitable for AS.
主动监测(AS)已发展成为一种替代根治性治疗的策略,用于极低风险和低风险前列腺癌(PCa)。然而,目前选择AS患者的标准仍不尽人意。在此,我们对循环miRNome进行了前所未有的分析,以研究与疾病重新分类相关的特定miRNA是否能为标准临床病理特征提供风险细化,从而改善患者选择。在三个独立的单机构队列(训练集、测试集和验证集)中,对386例接受AS治疗的患者基线时前瞻性采集的血浆样本进行了整体miRNA表达谱评估。发现一个三miRNA标志物(、和)可预测所有患者队列中的重新分类(训练集:AUC 0.74,95%CI 0.60 - 0.87;测试集:AUC 0.65,95%CI 0.51 - 0.80;验证集:AUC 0.68,95%CI 0.56 - 0.80)。重要的是,添加该三miRNA标志物可提高仅包含临床病理变量的临床模型的性能(AUC 0.70,95%CI 0.61 - 0.78对比0.76,95%CI 0.68 - 0.84)。总体而言,我们训练、测试并验证了一个三miRNA标志物,该标志物与选定的临床病理变量相结合,可能代表一种有前景的生物标志物,以改进目前可用的临床病理风险分层工具,从而更好地选择适合AS的真正惰性PCa患者。