Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.
Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.
J Urol. 2018 Jun;199(6):1475-1481. doi: 10.1016/j.juro.2017.12.006. Epub 2017 Dec 12.
Conventional clinical variables cannot accurately differentiate indolent from aggressive prostate cancer in patients on active surveillance. We investigated promising circulating miRNA biomarkers to predict the reclassification of active surveillance cases.
We collected serum samples from 2 independent active surveillance cohorts of 196 and 133 patients for the training and validation, respectively, of candidate miRNAs. All patients were treatment naïve and diagnosed with Gleason score 6 prostate cancer. Samples were collected prior to potential reclassification. We analyzed 9 circulating miRNAs previously shown to be associated with prostate cancer progression. Logistic regression and ROC analyses were performed to assess the predictive ability of miRNAs and clinical variables.
A 3-miR (miRNA-223, miRNA-24 and miRNA-375) score was significant to predict patient reclassification (training OR 2.72, 95% CI 1.50-4.94 and validation OR 3.70, 95% CI 1.29-10.6). It was independent of clinical characteristics in multivariable models. The ROC AUC was maximized when combining the 3-miR score and prostate specific antigen, indicating additive predictive value. The 3-miR score plus the prostate specific antigen panel cutoff achieved 89% to 90% negative predictive value and 66% to 81% specificity.
The 3-miR score combined with prostate specific antigen represents a noninvasive biomarker panel with high negative predictive value. It may be used to identify patients on active surveillance who have truly indolent prostate cancer.
在接受主动监测的患者中,常规临床变量无法准确区分惰性与侵袭性前列腺癌。我们研究了有前途的循环 miRNA 生物标志物,以预测主动监测病例的重新分类。
我们分别从 2 个独立的主动监测队列中收集了 196 名和 133 名患者的血清样本,用于候选 miRNA 的训练和验证。所有患者均未接受过治疗,且诊断为 Gleason 评分 6 前列腺癌。在可能重新分类之前采集样本。我们分析了 9 种先前与前列腺癌进展相关的循环 miRNA。进行逻辑回归和 ROC 分析,以评估 miRNA 和临床变量的预测能力。
3- miRNA(miRNA-223、miRNA-24 和 miRNA-375)评分可显著预测患者重新分类(训练 OR 2.72,95%CI 1.50-4.94,验证 OR 3.70,95%CI 1.29-10.6)。在多变量模型中,它独立于临床特征。当结合 3-miR 评分和前列腺特异性抗原时,ROC AUC 最大,表明具有附加预测价值。3-miR 评分加前列腺特异性抗原面板的截止值可实现 89%至 90%的阴性预测值和 66%至 81%的特异性。
3-miR 评分联合前列腺特异性抗原代表一种具有高阴性预测值的非侵入性生物标志物组合。它可用于识别主动监测中具有真正惰性前列腺癌的患者。