Yu Qiang, Liu Feiqiang, Xiao Long, Liu Zitao, Yang Xiaomin
College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China.
School of Aeronautics & Astronautics, Sichuan University, Chengdu 610064, China.
Int J Environ Res Public Health. 2021 May 31;18(11):5890. doi: 10.3390/ijerph18115890.
Deep-learning (DL)-based methods are of growing importance in the field of single image super-resolution (SISR). The practical application of these DL-based models is a remaining problem due to the requirement of heavy computation and huge storage resources. The powerful feature maps of hidden layers in convolutional neural networks (CNN) help the model learn useful information. However, there exists redundancy among feature maps, which can be further exploited. To address these issues, this paper proposes a lightweight efficient feature generating network (EFGN) for SISR by constructing the efficient feature generating block (EFGB). Specifically, the EFGB can conduct plain operations on the original features to produce more feature maps with parameters slightly increasing. With the help of these extra feature maps, the network can extract more useful information from low resolution (LR) images to reconstruct the desired high resolution (HR) images. Experiments conducted on the benchmark datasets demonstrate that the proposed EFGN can outperform other deep-learning based methods in most cases and possess relatively lower model complexity. Additionally, the running time measurement indicates the feasibility of real-time monitoring.
基于深度学习(DL)的方法在单图像超分辨率(SISR)领域中变得越来越重要。由于需要大量计算和巨大存储资源,这些基于DL的模型的实际应用仍然是一个问题。卷积神经网络(CNN)中隐藏层强大的特征图有助于模型学习有用信息。然而,特征图之间存在冗余,可以进一步加以利用。为了解决这些问题,本文通过构建高效特征生成块(EFGB),提出了一种用于SISR的轻量级高效特征生成网络(EFGN)。具体而言,EFGB可以对原始特征进行简单操作,以在参数略有增加的情况下生成更多特征图。借助这些额外的特征图,网络可以从低分辨率(LR)图像中提取更多有用信息,以重建所需的高分辨率(HR)图像。在基准数据集上进行的实验表明,所提出的EFGN在大多数情况下可以优于其他基于深度学习的方法,并且具有相对较低的模型复杂度。此外,运行时间测量表明了实时监测的可行性。