Suppr超能文献

使用轻量级图像超分辨率网络进行实时环境监测

Real-Time Environment Monitoring Using a Lightweight Image Super-Resolution Network.

作者信息

Yu Qiang, Liu Feiqiang, Xiao Long, Liu Zitao, Yang Xiaomin

机构信息

College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China.

School of Aeronautics & Astronautics, Sichuan University, Chengdu 610064, China.

出版信息

Int J Environ Res Public Health. 2021 May 31;18(11):5890. doi: 10.3390/ijerph18115890.

Abstract

Deep-learning (DL)-based methods are of growing importance in the field of single image super-resolution (SISR). The practical application of these DL-based models is a remaining problem due to the requirement of heavy computation and huge storage resources. The powerful feature maps of hidden layers in convolutional neural networks (CNN) help the model learn useful information. However, there exists redundancy among feature maps, which can be further exploited. To address these issues, this paper proposes a lightweight efficient feature generating network (EFGN) for SISR by constructing the efficient feature generating block (EFGB). Specifically, the EFGB can conduct plain operations on the original features to produce more feature maps with parameters slightly increasing. With the help of these extra feature maps, the network can extract more useful information from low resolution (LR) images to reconstruct the desired high resolution (HR) images. Experiments conducted on the benchmark datasets demonstrate that the proposed EFGN can outperform other deep-learning based methods in most cases and possess relatively lower model complexity. Additionally, the running time measurement indicates the feasibility of real-time monitoring.

摘要

基于深度学习(DL)的方法在单图像超分辨率(SISR)领域中变得越来越重要。由于需要大量计算和巨大存储资源,这些基于DL的模型的实际应用仍然是一个问题。卷积神经网络(CNN)中隐藏层强大的特征图有助于模型学习有用信息。然而,特征图之间存在冗余,可以进一步加以利用。为了解决这些问题,本文通过构建高效特征生成块(EFGB),提出了一种用于SISR的轻量级高效特征生成网络(EFGN)。具体而言,EFGB可以对原始特征进行简单操作,以在参数略有增加的情况下生成更多特征图。借助这些额外的特征图,网络可以从低分辨率(LR)图像中提取更多有用信息,以重建所需的高分辨率(HR)图像。在基准数据集上进行的实验表明,所提出的EFGN在大多数情况下可以优于其他基于深度学习的方法,并且具有相对较低的模型复杂度。此外,运行时间测量表明了实时监测的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d9c/8199203/8890854f12b5/ijerph-18-05890-g001.jpg

相似文献

1
Real-Time Environment Monitoring Using a Lightweight Image Super-Resolution Network.
Int J Environ Res Public Health. 2021 May 31;18(11):5890. doi: 10.3390/ijerph18115890.
2
Deconvolutional neural network for image super-resolution.
Neural Netw. 2020 Dec;132:394-404. doi: 10.1016/j.neunet.2020.09.017. Epub 2020 Sep 23.
3
MADNet: A Fast and Lightweight Network for Single-Image Super Resolution.
IEEE Trans Cybern. 2021 Mar;51(3):1443-1453. doi: 10.1109/TCYB.2020.2970104. Epub 2021 Feb 17.
4
Multi-level feature interaction image super-resolution network based on convolutional nonlinear spiking neural model.
Neural Netw. 2024 Sep;177:106366. doi: 10.1016/j.neunet.2024.106366. Epub 2024 May 6.
5
SRGAT: Single Image Super-Resolution With Graph Attention Network.
IEEE Trans Image Process. 2021;30:4905-4918. doi: 10.1109/TIP.2021.3077135. Epub 2021 May 13.
6
Image super-resolution with an enhanced group convolutional neural network.
Neural Netw. 2022 Sep;153:373-385. doi: 10.1016/j.neunet.2022.06.009. Epub 2022 Jun 11.
7
An Arbitrary Scale Super-Resolution Approach for 3D MR Images via Implicit Neural Representation.
IEEE J Biomed Health Inform. 2023 Feb;27(2):1004-1015. doi: 10.1109/JBHI.2022.3223106.
8
Deep Unsupervised Fusion Learning for Hyperspectral Image Super Resolution.
Sensors (Basel). 2021 Mar 28;21(7):2348. doi: 10.3390/s21072348.
9
MLWAN: Multi-Scale Learning Wavelet Attention Module Network for Image Super Resolution.
Sensors (Basel). 2022 Nov 24;22(23):9110. doi: 10.3390/s22239110.
10
Cascading and Enhanced Residual Networks for Accurate Single-Image Super-Resolution.
IEEE Trans Cybern. 2021 Jan;51(1):115-125. doi: 10.1109/TCYB.2019.2952710. Epub 2020 Dec 22.

引用本文的文献

1
Computing Techniques for Environmental Research and Public Health.
Int J Environ Res Public Health. 2021 Sep 18;18(18):9851. doi: 10.3390/ijerph18189851.

本文引用的文献

2
Bayer Demosaicking With Polynomial Interpolation.
IEEE Trans Image Process. 2016 Nov;25(11):5369-5382. doi: 10.1109/TIP.2016.2604489. Epub 2016 Aug 30.
3
Image quality assessment: from error visibility to structural similarity.
IEEE Trans Image Process. 2004 Apr;13(4):600-12. doi: 10.1109/tip.2003.819861.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验