Lan Rushi, Sun Long, Liu Zhenbing, Lu Huimin, Pang Cheng, Luo Xiaonan
IEEE Trans Cybern. 2021 Mar;51(3):1443-1453. doi: 10.1109/TCYB.2020.2970104. Epub 2021 Feb 17.
Recently, deep convolutional neural networks (CNNs) have been successfully applied to the single-image super-resolution (SISR) task with great improvement in terms of both peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). However, most of the existing CNN-based SR models require high computing power, which considerably limits their real-world applications. In addition, most CNN-based methods rarely explore the intermediate features that are helpful for final image recovery. To address these issues, in this article, we propose a dense lightweight network, called MADNet, for stronger multiscale feature expression and feature correlation learning. Specifically, a residual multiscale module with an attention mechanism (RMAM) is developed to enhance the informative multiscale feature representation ability. Furthermore, we present a dual residual-path block (DRPB) that utilizes the hierarchical features from original low-resolution images. To take advantage of the multilevel features, dense connections are employed among blocks. The comparative results demonstrate the superior performance of our MADNet model while employing considerably fewer multiadds and parameters.
最近,深度卷积神经网络(CNN)已成功应用于单图像超分辨率(SISR)任务,在峰值信噪比(PSNR)和结构相似性(SSIM)方面都有了很大的提高。然而,现有的大多数基于CNN的超分辨率模型都需要高计算能力,这在很大程度上限制了它们在现实世界中的应用。此外,大多数基于CNN的方法很少探索有助于最终图像恢复的中间特征。为了解决这些问题,在本文中,我们提出了一种密集轻量级网络,称为MADNet,用于更强的多尺度特征表达和特征相关性学习。具体来说,开发了一种带有注意力机制的残差多尺度模块(RMAM),以增强信息多尺度特征表示能力。此外,我们提出了一种双残差路径块(DRPB),它利用原始低分辨率图像的分层特征。为了利用多级特征,在块之间采用了密集连接。比较结果表明,我们的MADNet模型具有优越的性能,同时使用的乘法累加运算和参数要少得多。