Mitrega Katarzyna, Lip Gregory Y H, Sredniawa Beata, Sokal Adam, Streb Witold, Przyludzki Karol, Zdrojewski Tomasz, Wierucki Lukasz, Rutkowski Marcin, Bandosz Piotr, Kazmierczak Jaroslaw, Grodzicki Tomasz, Opolski Grzegorz, Kalarus Zbigniew
Department of Cardiology, Silesian Centre of Heart Diseases, 41-800 Zabrze, Poland.
Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool 14 3PE, UK.
J Clin Med. 2021 May 26;10(11):2321. doi: 10.3390/jcm10112321.
Silent atrial fibrillation (SAF) is common and is associated with poor outcomes.
to study the risk factors for AF and SAF in the elderly (≥65 years) general population and to develop a risk stratification model for predicting SAF.
Continuous ECG monitoring was performed for up to 30 days using a vest-based system in a cohort from NOMED-AF, a cross-sectional study based on a nationwide population sample. The independent risk factors for AF and SAF were determined using multiple logistic regression. ROC analysis was applied to validate the developed risk stratification score.
From the total cohort of 3014 subjects, AF was diagnosed in 680 individuals (mean age, 77.5 ± 7.9; 50.1% men) with AF, and, of these, 41% had SAF. Independent associations with an increased risk of AF were age, male gender, coronary heart disease, thyroid diseases, prior ischemic stroke or transient ischemic attack (ICS/TIA), diabetes, heart failure, chronic kidney disease (CKD), obesity, and NT-proBNP >125 ng/mL. The risk factors for SAF were age, male gender, ICS/TIA, diabetes, heart failure, CKD, and NT-proBNP >125 ng/mL. We developed a clinical risk scale (MR-DASH score) that achieved a good level of prediction in the derivation cohort (AUC 0.726) and the validation cohort (AUC 0.730).
SAF is associated with various clinical risk factors in a population sample of individuals ≥65 years. Stratifying individuals from the general population according to their risk for SAF may be possible using the MR-DASH score, facilitating targeted screening programs of individuals with a high risk of SAF.
隐匿性心房颤动(SAF)很常见,且与不良预后相关。
研究老年(≥65岁)普通人群中房颤和SAF的危险因素,并建立预测SAF的风险分层模型。
在一项基于全国人口样本的横断面研究NOMED-AF的队列中,使用基于背心的系统进行长达30天的连续心电图监测。使用多因素逻辑回归确定房颤和SAF的独立危险因素。应用ROC分析验证所建立的风险分层评分。
在3014名受试者的总队列中,680人(平均年龄77.5±7.9岁;50.1%为男性)被诊断为房颤,其中41%患有SAF。与房颤风险增加独立相关的因素有年龄、男性、冠心病、甲状腺疾病、既往缺血性中风或短暂性脑缺血发作(ICS/TIA)、糖尿病、心力衰竭、慢性肾脏病(CKD)、肥胖以及NT-proBNP>125 ng/mL。SAF的危险因素有年龄、男性、ICS/TIA、糖尿病、心力衰竭、CKD以及NT-proBNP>125 ng/mL。我们建立了一个临床风险量表(MR-DASH评分),该量表在推导队列(AUC 0.726)和验证队列(AUC 0.730)中均达到了良好的预测水平。
在≥65岁个体的人群样本中,SAF与多种临床危险因素相关。使用MR-DASH评分可能对普通人群中的个体根据其SAF风险进行分层,从而有助于对SAF高风险个体开展针对性筛查项目。