Apátiga Jorge Luis, Del Castillo Roxana Mitzayé, Del Castillo Luis Felipe, Calles Alipio G, Espejel-Morales Raúl, Favela José F, Compañ Vicente
Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Interior s/n, Ciudad Universitaria, Mexico City 04510, Mexico.
Departamento de Polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Interior s/n, Ciudad Universitaria, Mexico City 04510, Mexico.
Polymers (Basel). 2021 May 24;13(11):1714. doi: 10.3390/polym13111714.
It is well known that a small number of graphene nanoparticles embedded in polymers enhance the electrical conductivity; the polymer changes from being an insulator to a conductor. The graphene nanoparticles induce several quantum effects, non-covalent interactions, so the percolation threshold is accelerated. We studied five of the most widely used polymers embedded with graphene nanoparticles: polystyrene, polyethylene-terephthalate, polyether-ketone, polypropylene, and polyurethane. The polymers with aromatic rings are affected mainly by the graphene nanoparticles due to the π-π stacking, and the long-range terms of the dispersion corrections are predominant. The polymers with linear structure have a CH-π stacking, and the short-range terms of the dispersion corrections are the important ones. We used the action radius as a measuring tool to quantify the non-covalent interactions. This action radius was the main parameter used in the Monte-Carlo simulation to obtain the conductivity at room temperature (300 K). The action radius was the key tool to describe how the percolation transition works from the fundamental quantum levels and connect the microscopic study with macroscopic properties. In the Monte-Carlo simulation, it was observed that the non-covalent interactions affect the electronic transmission, inducing a higher mean-free path that promotes the efficiency in the transmission.
众所周知,嵌入聚合物中的少量石墨烯纳米颗粒可提高电导率;聚合物从绝缘体转变为导体。石墨烯纳米颗粒会引发多种量子效应、非共价相互作用,因此渗流阈值会加快。我们研究了嵌入石墨烯纳米颗粒的五种最常用聚合物:聚苯乙烯、聚对苯二甲酸乙二酯、聚醚酮、聚丙烯和聚氨酯。带有芳环的聚合物主要受石墨烯纳米颗粒的影响,这是由于π-π堆积,且色散校正的长程项占主导。具有线性结构的聚合物存在CH-π堆积,色散校正的短程项很重要。我们使用作用半径作为测量工具来量化非共价相互作用。这个作用半径是蒙特卡罗模拟中用于获得室温(300K)下电导率的主要参数。作用半径是描述渗流转变如何从基本量子水平起作用并将微观研究与宏观性质联系起来的关键工具。在蒙特卡罗模拟中,观察到非共价相互作用会影响电子传输,产生更高的平均自由程,从而提高传输效率。