Arakaki Atsushi, Shimizu Katsuhiko, Oda Mayumi, Sakamoto Takeshi, Nishimura Tatsuya, Kato Takashi
Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan.
Org Biomol Chem. 2015 Jan 28;13(4):974-89. doi: 10.1039/c4ob01796j. Epub 2014 Nov 6.
Organisms produce various organic/inorganic hybrid materials, which are called biominerals. They form through the self-organization of organic molecules and inorganic elements under ambient conditions. Biominerals often have highly organized and hierarchical structures from nanometer to macroscopic length scales, resulting in their remarkable physical and chemical properties that cannot be obtained by simple accumulation of their organic and inorganic constituents. These observations motivate us to create novel functional materials exhibiting properties superior to conventional materials--both synthetic and natural. Herein, we introduce recent progress in understanding biomineralization processes at the molecular level and the development of organic/inorganic hybrid materials by these processes. We specifically outline fundamental molecular studies on silica, iron oxide, and calcium carbonate biomineralization and describe material synthesis based on these mechanisms. These approaches allow us to design a variety of advanced hybrid materials with desired morphologies, sizes, compositions, and structures through environmentally friendly synthetic routes using functions of organic molecules.
生物体产生各种有机/无机杂化材料,这些材料被称为生物矿物。它们是在环境条件下通过有机分子和无机元素的自组装形成的。生物矿物通常具有从纳米到宏观长度尺度的高度有序和分级结构,这导致它们具有非凡的物理和化学性质,而这些性质无法通过其有机和无机成分的简单积累获得。这些观察结果促使我们创造出具有优于传统材料(包括合成材料和天然材料)性能的新型功能材料。在此,我们介绍了在分子水平上理解生物矿化过程以及通过这些过程开发有机/无机杂化材料的最新进展。我们特别概述了关于二氧化硅、氧化铁和碳酸钙生物矿化的基础分子研究,并描述了基于这些机制的材料合成。这些方法使我们能够通过利用有机分子的功能,通过环境友好的合成路线设计出具有所需形态、尺寸、组成和结构的各种先进杂化材料。