Bentout Soufiane, Djilali Salih, Kumar Sunil, Touaoula Tarik Mohammed
Laboratoire d'Analyse Non Linéaire et Mathématiques Appliquées, Université de Tlemcen, Tlemcen, Algeria.
Department of Mathematics and Informatics, Belhadj Bouchaib University of Ain Temouchent, BP 284 RP, 46000 Ain Temouchent, Algeria.
Eur Phys J Plus. 2021;136(5):587. doi: 10.1140/epjp/s13360-021-01466-0. Epub 2021 May 27.
In this research, we explore the global conduct of age-structured SEIR system with nonlinear incidence functional (NIF), where a threshold behavior is obtained. More precisely, we will analyze the investigated model differently, where we will rewrite it as a difference equations with infinite delay by the help of the characteristic method. Using standard conditions on the nonlinear incidence functional that can fit with a vast class of a well-known incidence functionals, we investigated the global asymptotic stability (GAS) of the disease-free equilibrium (DFE) using a Lyapunov functional (LF) for . The total trajectory method is utilized for avoiding proving the local behavior of equilibria. Further, in the case we achieved the persistence of the infection and the GAS of the endemic equilibrium state (EE) using the weakly -persistence theory, where a proper LF is obtained. The achieved results are checked numerically using graphical representations.
在本研究中,我们探讨了具有非线性发病率函数(NIF)的年龄结构SEIR系统的全局行为,在此过程中获得了一个阈值行为。更确切地说,我们将以不同方式分析所研究的模型,借助特征方法将其重写为具有无限延迟的差分方程。利用适用于一大类著名发病率函数的非线性发病率函数的标准条件,我们使用李雅普诺夫泛函(LF)研究了无病平衡点(DFE)的全局渐近稳定性(GAS)。为避免证明平衡点的局部行为,采用了总轨迹法。此外,在 的情况下,我们利用弱 -持久性理论实现了感染的持久性和地方病平衡点(EE)的全局渐近稳定性,在此过程中获得了一个合适的李雅普诺夫泛函。通过图形表示对所取得的结果进行了数值检验。