Suppr超能文献

迭代重建算法对基于傅里叶的 X 射线 CT 成像检测能力指数适用性的影响。

Impact of iterative reconstruction algorithms on the applicability of Fourier-based detectability index for x-ray CT imaging.

机构信息

Department of Medical Physics, Jean Perrin Comprehensive Cancer Center, Clermont-Ferrand, F-63000, France.

Clermont-Ferrand University, UMR 1240 INSERM IMoST, Clermont-Ferrand, F-63000, France.

出版信息

Med Phys. 2021 Aug;48(8):4229-4241. doi: 10.1002/mp.15015. Epub 2021 Jul 9.

Abstract

PURPOSE

The increasing application of iterative reconstruction algorithms in clinical computed tomography to improve image quality and reduce radiation dose, elicits strong interest, and needs model observers to optimize CT scanning protocols objectively and efficiently. The current paradigm for evaluating imaging system performance relies on Fourier methods, which presuppose a linear, wide-sense stationary system. Long-range correlations introduced by iterative reconstruction algorithms may narrow the applicability of Fourier techniques. Differences in the implementation of reconstruction algorithms between manufacturers add further complexity. The present work set out to quantify the errors entailed by the use of Fourier methods, which can lead to design decisions that do not correlate with detectability.

METHODS

To address this question, we evaluated the noise properties and the detectability index of the ideal linear observer using the spatial approach and the Fourier-based approach. For this purpose, a homogeneous phantom was imaged on two scanners: the Revolution CT (GE Healthcare) and the Somatom Definition AS+ (Siemens Healthcare) at different exposure levels. Images were reconstructed using different strength levels of IR algorithms available on the systems considered: Adaptative Statistical Iterative Reconstruction (ASIR-V) and Sinogram Affirmed Iterative Reconstruction (SAFIRE).

RESULTS

Our findings highlight that the spatial domain estimate of the detectability index is higher than the Fourier domain estimate. This trend is found to be dependent on the specific regularization used by IR algorithms as well as the signal to be detected. The eigenanalysis of the noise covariance matrix and of its circulant approximation yields explanation about the evoked trends. In particular, this analysis suggests that the predictive power of the Fourier-based ideal linear observer depends on the ability of each basis analyzed to be relevant to the signal to be detected.

CONCLUSION

The applicability of Fourier techniques is dependent on the specific regularization used by IR algorithms. These results argue for verifying the assumptions made when using Fourier methods since Fourier-task-based detectability index does not always correlate with signal detectability.

摘要

目的

迭代重建算法在临床计算机断层扫描中的应用日益广泛,以提高图像质量和降低辐射剂量,这引起了人们的浓厚兴趣,并需要模型观察者客观有效地优化 CT 扫描方案。目前,评估成像系统性能的范例依赖于傅里叶方法,该方法假定系统是线性的、宽平稳的。迭代重建算法引入的长程相关性可能会缩小傅里叶技术的适用性。制造商之间重建算法的实现差异增加了进一步的复杂性。本研究旨在量化使用傅里叶方法所带来的误差,这些误差可能导致与可检测性不相关的设计决策。

方法

为了解决这个问题,我们使用空间方法和基于傅里叶的方法评估了理想线性观察者的噪声特性和检测指标。为此,在两台扫描仪上对均质体模进行了成像:Revolution CT(GE Healthcare)和 Somatom Definition AS+(西门子医疗保健),曝光水平不同。使用系统中可用的不同强度级别的 IR 算法重建图像:适应性统计迭代重建(ASIR-V)和正弦图确认迭代重建(SAFIRE)。

结果

我们的研究结果表明,检测指标的空间域估计值高于傅里叶域估计值。这一趋势被发现取决于 IR 算法使用的特定正则化方法以及要检测的信号。噪声协方差矩阵及其循环逼近的特征分析为所引起的趋势提供了解释。特别是,该分析表明,基于傅里叶的理想线性观察者的预测能力取决于所分析的每个基能够与要检测的信号相关的能力。

结论

傅里叶技术的适用性取决于 IR 算法使用的特定正则化方法。这些结果表明,在使用傅里叶方法时,需要验证所做的假设,因为基于傅里叶的任务检测指标并不总是与信号检测能力相关。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验