Suppr超能文献

双通道逻辑门在 Chemopalette ssDNA-Ag NCs/GO 纳米复合材料上的工作原理。

Dual-Channel Logic Gates Operating on the Chemopalette ssDNA-Ag NCs/GO Nanocomposites.

机构信息

School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.

出版信息

Anal Chem. 2021 Jun 15;93(23):8326-8335. doi: 10.1021/acs.analchem.1c01288. Epub 2021 Jun 2.

Abstract

In this work, we demonstrate that the emission wavelength and intensity of silver nanoclusters (Ag NCs) can be facilely tuned by the configuration transformation from the adsorption of Ag NCs to the graphene oxide (GO) surface to the desorption of Ag NCs from GO. Bicolor Ag NCs tethering the complementary sequence of influenza A virus genes are prepared, named green-emitting G-Ag NCs-CH5N1 (530 nm) and red-emitting R-Ag NCs-CH1N1 (589 nm). As for the high affinity of the complementary fragment of genes to GO, the adsorption of Ag NCs to GO leads to the formation of G-Ag NCs-CH5N1/GO and R-Ag NCs-CH1N1/GO nanocomposites, leading to fluorescent quenching due to energy transfer. By conjugating complementary sequences as capturing probes for targets, the formation of genes/Ag NC duplex-stranded structures results in the desorption of Ag NCs from GO, activating the fluorescence signal. More interestingly, compared with sole single-stranded DNA-templated fluorescent Ag NCs (ssDNA-Ag NCs), the activatable emission wavelength of the G-Ag NCs-CH5N1/H5N1 complex exhibits a notable red shift (555 nm) with a 49% recovery rate, while that of the R-Ag NCs-CH1N1/H1N1 complex shows a distinct blue shift (569 nm) with a 200% recovery rate. Via target-responsive configuration transformation of Ag NCs/GO hybrid materials, the emission wavelength and intensity of Ag NCs are effectively regulated. Based on the output changes according to different input combinations, novel dual-channel logic gates for multiplex simultaneous detection are developed by using the tunable color and intensity of ssDNA-Ag NCs. Our observation may open a new path for multiplex analysis in a facile and rapid way combining the logic gate strategy.

摘要

在这项工作中,我们证明了银纳米团簇(Ag NCs)的发射波长和强度可以通过 Ag NCs 从吸附到氧化石墨烯(GO)表面到从 GO 上解吸的构型转变来轻松调节。制备了缀合流感 A 病毒基因互补序列的双色 Ag NCs,分别命名为发绿光的 G-Ag NCs-CH5N1(530nm)和发红光的 R-Ag NCs-CH1N1(589nm)。由于基因互补片段与 GO 具有高亲和力,Ag NCs 吸附到 GO 上导致形成 G-Ag NCs-CH5N1/GO 和 R-Ag NCs-CH1N1/GO 纳米复合材料,由于能量转移导致荧光猝灭。通过将互补序列作为靶标结合的捕获探针进行修饰,Ag NCs 从 GO 上解吸,形成基因/Ag NC 双链结构,从而激活荧光信号。更有趣的是,与单独的单链 DNA 模板化荧光 Ag NCs(ssDNA-Ag NCs)相比,G-Ag NCs-CH5N1/H5N1 复合物的可激活发射波长有明显的红移(555nm),恢复率为 49%,而 R-Ag NCs-CH1N1/H1N1 复合物则显示出明显的蓝移(569nm),恢复率为 200%。通过 Ag NCs/GO 杂化材料的靶标响应构型转变,有效地调节了 Ag NCs 的发射波长和强度。基于根据不同输入组合的输出变化,通过使用 ssDNA-Ag NCs 的可调颜色和强度,开发了用于多路复用同时检测的新型双通道逻辑门。我们的观察结果可能为结合逻辑门策略的简便快速的多路复用分析开辟了新途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验