Benkabou Seif-Eddine, Benabdeslem Khalid, Kraus Vivien, Bourhis Kilian, Canitia Bruno
IEEE Trans Neural Netw Learn Syst. 2022 Nov;33(11):6701-6711. doi: 10.1109/TNNLS.2021.3083183. Epub 2022 Oct 27.
Multivariate time series data are invasive in different domains, ranging from data center supervision and e-commerce data to financial transactions. This kind of data presents an important challenge for anomaly detection due to the temporal dependency aspect of its observations. In this article, we investigate the problem of unsupervised local anomaly detection in multivariate time series data from temporal modeling and residual analysis perspectives. The residual analysis has been shown to be effective in classical anomaly detection problems. However, it is a nontrivial task in multivariate time series as the temporal dependency between the time series observations complicates the residual modeling process. Methodologically, we propose a unified learning framework to characterize the residuals and their coherence with the temporal aspect of the whole multivariate time series. Experiments on real-world datasets are provided showing the effectiveness of the proposed algorithm.
多变量时间序列数据在不同领域都有广泛应用,从数据中心监控、电子商务数据到金融交易。由于其观测值的时间依赖性,这类数据给异常检测带来了重大挑战。在本文中,我们从时间建模和残差分析的角度研究多变量时间序列数据中无监督局部异常检测的问题。残差分析在经典异常检测问题中已被证明是有效的。然而,在多变量时间序列中这是一项具有挑战性的任务,因为时间序列观测值之间的时间依赖性使残差建模过程变得复杂。从方法上讲,我们提出了一个统一的学习框架来刻画残差及其与整个多变量时间序列时间维度的一致性。提供了在真实数据集上的实验,展示了所提算法的有效性。