School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China.
Sci Rep. 2023 Mar 16;13(1):4400. doi: 10.1038/s41598-023-31193-8.
Real-world industrial systems contain a large number of interconnected sensors that generate a significant amount of time series data during system operation. Performing anomaly detection on these multivariate time series data can timely find faults, prevent malicious attacks, and ensure these systems safe and reliable operation. However, the rarity of abnormal instances leads to a lack of labeled data, so the supervised machine learning methods are not applicable. Furthermore, most current techniques do not take full advantage of the spatial and temporal dependencies implied among multiple variables to detect anomalies. Hence, we propose STADN, a novel Anomaly Detection Network Using Spatial and Temporal Information. STADN models the relationship graph between variables for a graph attention network to capture the spatial dependency between variables and utilizes a long short-term memory network to mine the temporal dependency of time series to fully use the spatial and temporal information of multivariate time series. STADN predicts the future behavior of each sensor by combining the historical behavior of the sensor and its neighbors, then detects and locates anomalies according to the prediction error. Furthermore, we improve the proposed model's ability to discriminate anomaly and regularity and expand the prediction error gap between normal and abnormal instances by reconstructing the prediction errors. We conduct experiments on two real-world datasets, and the experimental results suggested that STADN achieves state-of-the-art outperformance.
真实世界的工业系统包含大量相互连接的传感器,这些传感器在系统运行过程中会生成大量的时间序列数据。对这些多元时间序列数据进行异常检测可以及时发现故障,防止恶意攻击,确保这些系统安全可靠运行。然而,异常实例的稀有性导致了标记数据的缺乏,因此监督机器学习方法并不适用。此外,目前大多数技术并没有充分利用多个变量之间隐含的空间和时间相关性来检测异常。因此,我们提出了 STADN,一种使用空间和时间信息的新型异常检测网络。STADN 为图注意力网络建模变量之间的关系图,以捕获变量之间的空间依赖性,并利用长短时记忆网络挖掘时间序列的时间依赖性,从而充分利用多元时间序列的空间和时间信息。STADN 通过结合传感器的历史行为及其邻居的历史行为来预测每个传感器的未来行为,然后根据预测误差检测和定位异常。此外,我们通过重构预测误差来提高所提出模型区分异常和正常的能力,并扩大正常和异常实例之间的预测误差差距。我们在两个真实数据集上进行了实验,实验结果表明 STADN 实现了最先进的性能。