Suppr超能文献

死因数据的公共卫生效用:应用经验算法改善数据质量。

Public health utility of cause of death data: applying empirical algorithms to improve data quality.

机构信息

Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA.

Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.

出版信息

BMC Med Inform Decis Mak. 2021 Jun 2;21(1):175. doi: 10.1186/s12911-021-01501-1.

Abstract

BACKGROUND

Accurate, comprehensive, cause-specific mortality estimates are crucial for informing public health decision making worldwide. Incorrectly or vaguely assigned deaths, defined as garbage-coded deaths, mask the true cause distribution. The Global Burden of Disease (GBD) study has developed methods to create comparable, timely, cause-specific mortality estimates; an impactful data processing method is the reallocation of garbage-coded deaths to a plausible underlying cause of death. We identify the pattern of garbage-coded deaths in the world and present the methods used to determine their redistribution to generate more plausible cause of death assignments.

METHODS

We describe the methods developed for the GBD 2019 study and subsequent iterations to redistribute garbage-coded deaths in vital registration data to plausible underlying causes. These methods include analysis of multiple cause data, negative correlation, impairment, and proportional redistribution. We classify garbage codes into classes according to the level of specificity of the reported cause of death (CoD) and capture trends in the global pattern of proportion of garbage-coded deaths, disaggregated by these classes, and the relationship between this proportion and the Socio-Demographic Index. We examine the relative importance of the top four garbage codes by age and sex and demonstrate the impact of redistribution on the annual GBD CoD rankings.

RESULTS

The proportion of least-specific (class 1 and 2) garbage-coded deaths ranged from 3.7% of all vital registration deaths to 67.3% in 2015, and the age-standardized proportion had an overall negative association with the Socio-Demographic Index. When broken down by age and sex, the category for unspecified lower respiratory infections was responsible for nearly 30% of garbage-coded deaths in those under 1 year of age for both sexes, representing the largest proportion of garbage codes for that age group. We show how the cause distribution by number of deaths changes before and after redistribution for four countries: Brazil, the United States, Japan, and France, highlighting the necessity of accounting for garbage-coded deaths in the GBD.

CONCLUSIONS

We provide a detailed description of redistribution methods developed for CoD data in the GBD; these methods represent an overall improvement in empiricism compared to past reliance on a priori knowledge.

摘要

背景

准确、全面、特定病因的死亡率估计对于全球公共卫生决策至关重要。不正确或模糊分配的死亡,即垃圾编码死亡,掩盖了真实的死因分布。全球疾病负担(GBD)研究已经开发出创建可比、及时、特定病因死亡率估计的方法;一种有影响力的数据处理方法是将垃圾编码死亡重新分配到一个合理的潜在死因。我们确定了全球垃圾编码死亡的模式,并提出了用于确定其重新分配以生成更合理死因分配的方法。

方法

我们描述了 GBD 2019 研究及其后续迭代中用于将生命登记数据中的垃圾编码死亡重新分配到合理潜在死因的方法。这些方法包括多死因数据分析、负相关、损伤和比例重新分配。我们根据死因报告的特异性水平将垃圾代码分类为不同类别,并捕捉全球垃圾编码死亡比例的趋势,按这些类别进行细分,以及该比例与社会人口指数之间的关系。我们检查了按年龄和性别划分的前四个垃圾代码的相对重要性,并展示了重新分配对年度 GBD 死因排名的影响。

结果

最不具体(类别 1 和 2)垃圾编码死亡的比例范围从所有生命登记死亡的 3.7%到 2015 年的 67.3%,年龄标准化比例与社会人口指数呈总体负相关。按年龄和性别细分时,男女婴儿的未特指下呼吸道感染类别占所有垃圾编码死亡的近 30%,代表该年龄组垃圾代码的最大比例。我们展示了在重新分配前后,四个国家(巴西、美国、日本和法国)的死因分布如何按死亡人数发生变化,突出了在 GBD 中考虑垃圾编码死亡的必要性。

结论

我们提供了 GBD 中死因数据重新分配方法的详细描述;这些方法与过去依赖先验知识相比,代表了经验主义的整体改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e4f/8170729/04d0025705a0/12911_2021_1501_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验