Suppr超能文献

用于逻辑检测鼻咽癌相关进展生物标志物的几何编码 SERS 纳米条形码。

Geometrically encoded SERS nanobarcodes for the logical detection of nasopharyngeal carcinoma-related progression biomarkers.

机构信息

Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian, China.

Department of Chemistry, National Taiwan University, Taipei, Taiwan.

出版信息

Nat Commun. 2021 Jun 8;12(1):3430. doi: 10.1038/s41467-021-23789-3.

Abstract

The limited availability of nasopharyngeal carcinoma-related progression biomarker array kits that offer physicians comprehensive information is disadvantageous for monitoring cancer progression. To develop a biomarker array kit, systematic identification and differentiation of a large number of distinct molecular surface-enhanced Raman scattering (SERS) reporters with high spectral temporal resolution is a major challenge. To address this unmet need, we use the chemistry of metal carbonyls to construct a series of unique SERS reporters with the potential to provide logical and highly multiplex information during testing. In this study, we report that geometric control over metal carbonyls on nanotags can produce 14 distinct barcodes that can be decoded unambiguously using commercial Raman spectroscopy. These metal carbonyl nanobarcodes are tested on human blood samples and show strong sensitivity (0.07 ng/mL limit of detection, average CV of 6.1% and >92% degree of recovery) and multiplexing capabilities for MMPs.

摘要

鼻咽癌相关进展生物标志物阵列试剂盒的供应有限,无法为医生提供全面的信息,不利于监测癌症进展。为了开发生物标志物阵列试剂盒,系统地识别和区分大量具有高光谱时间分辨率的不同分子表面增强拉曼散射(SERS)报告物是一个重大挑战。为了解决这一未满足的需求,我们使用金属羰基化合物的化学性质构建了一系列独特的 SERS 报告物,它们具有在测试过程中提供逻辑和高度多重信息的潜力。在这项研究中,我们报告称,纳米标签上的金属羰基的几何控制可以产生 14 种不同的条码,可以使用商业拉曼光谱术进行明确解码。这些金属羰基纳米条码在人血样本上进行了测试,显示出对 MMPs 的强灵敏度(检测限为 0.07ng/mL,平均 CV 为 6.1%,回收率>92%)和多重检测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b9b/8173014/cd9f5e12796b/41467_2021_23789_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验