Wang Ning, Peng Ying-Jie, Su Xiaoyu, Prabhakar Nanduri R, Nanduri Jayasri
Institute for Integrative Physiology, Center for Systems Biology of O2 Sensing, The University of Chicago, Chicago, IL, United States.
Front Physiol. 2021 May 17;12:688322. doi: 10.3389/fphys.2021.688322. eCollection 2021.
Intermittent hypoxia (IH) is a hallmark manifestation of obstructive sleep apnea (OSA). Long term IH (LT-IH) triggers epigenetic reprogramming of the redox state involving DNA hypermethylation in the carotid body chemo reflex pathway resulting in persistent sympathetic activation and hypertension. Present study examined whether IH also activates epigenetic mechanism(s) other than DNA methylation. Histone modification by lysine acetylation is another major epigenetic mechanism associated with gene regulation. Equilibrium between the activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs) determine the level of lysine acetylation. Here we report that exposure of rat pheochromocytoma (PC)-12 cells to IH exhibited reduced HDAC enzyme activity due to proteasomal degradation of HDAC3 and HDAC5 proteins. Mechanistic investigations showed that IH-evoked decrease in HDAC activity increases lysine acetylation of α subunit of hypoxia inducible factor (HIF)-1α as well as Histone (H3) protein resulting in increased HIF-1 transcriptional activity. Trichostatin A (TSA), an inhibitor of HDACs, mimicked the effects of IH. Studies on rats treated with 10 days of IH or TSA showed reduced HDAC activity, HDAC5 protein, and increased HIF-1 dependent NADPH oxidase (NOX)-4 transcription in adrenal medullae (AM) resulting in elevated plasma catecholamines and blood pressure. Likewise, heme oxygenase (HO)-2 null mice, which exhibit IH because of high incidence of spontaneous apneas (apnea index 72 ± 1.2 apnea/h), also showed decreased HDAC activity and HDAC5 protein in the AM along with elevated circulating norepinephrine levels. These findings demonstrate that lysine acetylation of histone and non-histone proteins is an early epigenetic mechanism associated with sympathetic nerve activation and hypertension in rodent models of IH.
间歇性低氧(IH)是阻塞性睡眠呼吸暂停(OSA)的标志性表现。长期间歇性低氧(LT-IH)引发氧化还原状态的表观遗传重编程,涉及颈动脉体化学反射途径中的DNA高甲基化,导致持续性交感神经激活和高血压。本研究探讨了IH是否还会激活除DNA甲基化之外的表观遗传机制。赖氨酸乙酰化介导的组蛋白修饰是另一种与基因调控相关的主要表观遗传机制。组蛋白乙酰转移酶(HATs)和组蛋白去乙酰化酶(HDACs)活性之间的平衡决定了赖氨酸乙酰化水平。在此我们报告,大鼠嗜铬细胞瘤(PC)-12细胞暴露于IH后,由于HDAC3和HDAC5蛋白的蛋白酶体降解,HDAC酶活性降低。机制研究表明,IH引起的HDAC活性降低增加了缺氧诱导因子(HIF)-1α亚基以及组蛋白(H3)蛋白的赖氨酸乙酰化,导致HIF-1转录活性增加。HDAC抑制剂曲古抑菌素A(TSA)模拟了IH的作用。对接受10天IH或TSA治疗的大鼠的研究表明,肾上腺髓质(AM)中HDAC活性、HDAC5蛋白降低,HIF-1依赖性烟酰胺腺嘌呤二核苷酸磷酸氧化酶(NOX)-4转录增加,导致血浆儿茶酚胺和血压升高。同样,由于自发性呼吸暂停发生率高(呼吸暂停指数72±1.2次呼吸暂停/小时)而表现出IH的血红素加氧酶(HO)-2基因敲除小鼠,其AM中的HDAC活性和HDAC5蛋白也降低,同时循环去甲肾上腺素水平升高。这些发现表明,组蛋白和非组蛋白蛋白的赖氨酸乙酰化是IH啮齿动物模型中与交感神经激活和高血压相关的早期表观遗传机制。