Suppr超能文献

角质形成细胞癌放射治疗的肿瘤控制概率建模

Tumor Control Probability Modeling for Radiation Therapy of Keratinocyte Carcinoma.

作者信息

Prior Phillip, Awan Musaddiq J, Wilson J Frank, Li X Allen

机构信息

Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States.

出版信息

Front Oncol. 2021 May 17;11:621641. doi: 10.3389/fonc.2021.621641. eCollection 2021.

Abstract

SUMMARY

Skin cancer patients may be treated definitively using radiation therapy (RT) with electrons, kilovoltage, or megavoltage photons depending on tumor stage and invasiveness. This study modeled tumor control probability (TCP) based on the pooled clinical outcome data of RT for primary basal and cutaneous squamous cell carcinomas (BCC and cSCC, respectively). Four TCP models were developed and found to be potentially useful in developing optimal treatment schemes based on recommended ASTRO 2020 Skin Consensus Guidelines for primary, keratinocyte carcinomas ( BCC and cSCC).

BACKGROUND

Radiotherapy (RT) with electrons or photon beams is an excellent primary treatment option for keratinocyte carcinoma (KC), particularly for non-surgical candidates. Our objective is to model tumor control probability (TCP) based on the pooled clinical data of primary basal and cutaneous squamous cell carcinomas (BCC and cSCC, respectively) in order to optimize treatment schemes.

METHODS

Published reports citing crude estimates of tumor control for primary KCs of the head by tumor size (diameter: ≤2 cm and >2 cm) were considered in our study. A TCP model based on a sigmoidal function of biological effective dose () was proposed. Three-parameter TCP models were generated for BCCs ≤2 cm, BCCs >2cm, cSCCs ≤2 cm, and cSCCs >2 cm. Equivalent fractionation schemes were estimated based on the TCP model and appropriate parameters.

RESULTS

TCP model parameters for both BCC and cSCC for tumor sizes ≤2 cm and >2cm were obtained. For BCC, the model parameters were found to be = 56.62 ± 6.18 × 10 Gy, = 0.14 ± 2.31 × 10 Gy and = 0.97 ± 4.99 × 10 and = 55.78 ± 0.19 Gy,  = 1.53 ± 0.20 Gy and = 0.94 ± 3.72 × 10 for tumor sizes of ≤2 cm and >2 cm, respectively. For SCC the model parameters were found to be = 56.81 ± 19.40 × 10 Gy, = 0.13 ± 7.92 × 10 Gy and = 0.96 ± 1.31 × 10 and = 58.44 ± 0.30 Gy, = 2.30 ± 0.43 Gy and = 0.91± 1.22 × 10 for tumors ≤2cm and >2 cm, respectively. The TCP model with the derived parameters predicts that radiation regimens with higher doses, such as increasing the number of fractions and/or dose per fraction, lead to higher TCP, especially for KCs >2 cm in size.

CONCLUSION

Four TCP models for primary KCs were developed based on pooled clinical data that may be used to further test the recommended kV and MV x-ray and electron RT regimens from the 2020 ASTRO guidelines. Increasing both number of fractions and dose per fraction may have clinically significant effects on tumor control for tumors >2 cm in size for both BCC and cSCC.

摘要

摘要

根据肿瘤分期和侵袭性,皮肤癌患者可使用电子线、千伏或兆伏光子进行放射治疗(RT)以达到根治效果。本研究基于原发性基底细胞癌和皮肤鳞状细胞癌(分别为BCC和cSCC)放射治疗的汇总临床结果数据,对肿瘤控制概率(TCP)进行了建模。开发了四种TCP模型,发现这些模型在根据2020年美国放射肿瘤学会(ASTRO)原发性角质形成细胞癌(BCC和cSCC)皮肤共识指南制定最佳治疗方案方面可能有用。

背景

电子束或光子束放射治疗(RT)是角质形成细胞癌(KC)的一种优秀的主要治疗选择,特别是对于不适合手术的患者。我们的目标是基于原发性基底细胞癌和皮肤鳞状细胞癌(分别为BCC和cSCC)的汇总临床数据,对肿瘤控制概率(TCP)进行建模,以优化治疗方案。

方法

我们的研究考虑了已发表的报告,这些报告引用了根据肿瘤大小(直径:≤2 cm和>2 cm)对头颈部原发性KC的肿瘤控制粗略估计。提出了一种基于生物等效剂量(BED)的S形函数的TCP模型。为直径≤2 cm的BCC、直径>2 cm的BCC、直径≤2 cm的cSCC和直径>2 cm的cSCC生成了三参数TCP模型。根据TCP模型和适当参数估计等效分割方案。

结果

获得了肿瘤大小≤2 cm和>2 cm的BCC和cSCC的TCP模型参数。对于BCC,对于肿瘤大小≤2 cm和>2 cm,模型参数分别为α = 56.62±6.18×10⁻³ Gy,β = 0.14±2.31×10⁻³ Gy和γ = 0.97±4.99×10⁻²以及α = 55.78±0.19 Gy,β = 1.53±0.20 Gy和γ = 0.94±3.72×10⁻²。对于SCC,对于肿瘤大小≤2 cm和>2 cm,模型参数分别为α = 56.81±19.40×10⁻³ Gy,β = 0.13±7.92×10⁻³ Gy和γ = 0.96±1.31×10⁻²以及α = 58.44±0.30 Gy,β = 2.30±0.43 Gy和γ = 0.91±1.22×10⁻²。具有推导参数的TCP模型预测,更高剂量的放射治疗方案,如增加分割次数和/或每次分割剂量,会导致更高的TCP,特别是对于直径>2 cm的KC。

结论

基于汇总临床数据开发了四种原发性KC的TCP模型,可用于进一步测试2020年ASTRO指南推荐的千伏和兆伏X射线及电子RT方案。增加分割次数和每次分割剂量对直径>2 cm的BCC和cSCC肿瘤的控制可能具有临床显著效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b21/8165325/a1f8652f3589/fonc-11-621641-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验