Suppr超能文献

在干预和治疗之前预测需要高级呼吸支持的急性呼吸衰竭:基于电子病历数据的多变量预测模型

Prediction of Acute Respiratory Failure Requiring Advanced Respiratory Support in Advance of Interventions and Treatment: A Multivariable Prediction Model From Electronic Medical Record Data.

作者信息

Wong An-Kwok I, Kamaleswaran Rishikesan, Tabaie Azade, Reyna Matthew A, Josef Christopher, Robichaux Chad, de Hond Anne A H, Steyerberg Ewout W, Holder Andre L, Nemati Shamim, Buchman Timothy G, Blum James M

机构信息

Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA.

Department of Biomedical Informatics, Emory University, Atlanta, GA.

出版信息

Crit Care Explor. 2021 May 12;3(5):e0402. doi: 10.1097/CCE.0000000000000402. eCollection 2021 May.

Abstract

BACKGROUND

Acute respiratory failure occurs frequently in hospitalized patients and often begins outside the ICU, associated with increased length of stay, cost, and mortality. Delays in decompensation recognition are associated with worse outcomes.

OBJECTIVES

The objective of this study is to predict acute respiratory failure requiring any advanced respiratory support (including noninvasive ventilation). With the advent of the coronavirus disease pandemic, concern regarding acute respiratory failure has increased.

DERIVATION COHORT

All admission encounters from January 2014 to June 2017 from three hospitals in the Emory Healthcare network (82,699).

VALIDATION COHORT

External validation cohort: all admission encounters from January 2014 to June 2017 from a fourth hospital in the Emory Healthcare network (40,143). Temporal validation cohort: all admission encounters from February to April 2020 from four hospitals in the Emory Healthcare network coronavirus disease tested (2,564) and coronavirus disease positive (389).

PREDICTION MODEL

All admission encounters had vital signs, laboratory, and demographic data extracted. Exclusion criteria included invasive mechanical ventilation started within the operating room or advanced respiratory support within the first 8 hours of admission. Encounters were discretized into hour intervals from 8 hours after admission to discharge or advanced respiratory support initiation and binary labeled for advanced respiratory support. Prediction of Acute Respiratory Failure requiring advanced respiratory support in Advance of Interventions and Treatment, our eXtreme Gradient Boosting-based algorithm, was compared against Modified Early Warning Score.

RESULTS

Prediction of Acute Respiratory Failure requiring advanced respiratory support in Advance of Interventions and Treatment had significantly better discrimination than Modified Early Warning Score (area under the receiver operating characteristic curve 0.85 vs 0.57 [test], 0.84 vs 0.61 [external validation]). Prediction of Acute Respiratory Failure requiring advanced respiratory support in Advance of Interventions and Treatment maintained a positive predictive value (0.31-0.21) similar to that of Modified Early Warning Score greater than 4 (0.29-0.25) while identifying 6.62 (validation) to 9.58 (test) times more true positives. Furthermore, Prediction of Acute Respiratory Failure requiring advanced respiratory support in Advance of Interventions and Treatment performed more effectively in temporal validation (area under the receiver operating characteristic curve 0.86 [coronavirus disease tested], 0.93 [coronavirus disease positive]), while achieving identifying 4.25-4.51× more true positives.

CONCLUSIONS

Prediction of Acute Respiratory Failure requiring advanced respiratory support in Advance of Interventions and Treatment is more effective than Modified Early Warning Score in predicting respiratory failure requiring advanced respiratory support at external validation and in coronavirus disease 2019 patients. Silent prospective validation necessary before local deployment.

摘要

背景

急性呼吸衰竭在住院患者中频繁发生,且常始于重症监护病房(ICU)之外,这与住院时间延长、费用增加及死亡率上升相关。失代偿识别延迟与更差的预后相关。

目的

本研究的目的是预测需要任何高级呼吸支持(包括无创通气)的急性呼吸衰竭。随着冠状病毒病大流行的出现,对急性呼吸衰竭的关注有所增加。

推导队列

2014年1月至2017年6月埃默里医疗网络中三家医院的所有入院病例(82,699例)。

验证队列

外部验证队列:2014年1月至2017年6月埃默里医疗网络中第四家医院的所有入院病例(40,143例)。时间验证队列:2020年2月至4月埃默里医疗网络中四家医院经冠状病毒病检测的所有入院病例(2,564例)和冠状病毒病阳性病例(389例)。

预测模型

提取所有入院病例的生命体征、实验室检查及人口统计学数据。排除标准包括在手术室开始的有创机械通气或入院后8小时内的高级呼吸支持。病例按入院后8小时至出院或开始高级呼吸支持的时间间隔进行离散化,并对高级呼吸支持进行二元标记。将我们基于极端梯度提升算法的“干预和治疗前急性呼吸衰竭高级呼吸支持预测”与改良早期预警评分进行比较。

结果

“干预和治疗前急性呼吸衰竭高级呼吸支持预测”在辨别能力上显著优于改良早期预警评分(受试者操作特征曲线下面积分别为0.85对0.‌57[测试],0.84对0.61[外部验证])。“干预和治疗前急性呼吸衰竭高级呼吸支持预测”的阳性预测值(0.31 - 0.21)与改良早期预警评分大于4时的阳性预测值(0.29 - 0.25)相似,同时识别出更多真阳性病例,是其6.62(验证)至9.58(测试)倍。此外,“干预和治疗前急性呼吸衰竭高级呼吸支持预测”在时间验证中表现更有效(受试者操作特征曲线下面积分别为0.86[经冠状病毒病检测],0.93[冠状病毒病阳性]),同时识别出的真阳性病例多4.25 - 4.51倍。

结论

在外部验证及2019冠状病毒病患者中,“干预和治疗前急性呼吸衰竭高级呼吸支持预测”在预测需要高级呼吸支持的呼吸衰竭方面比改良早期预警评分更有效。在本地应用前需进行静默前瞻性验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/743b/8162520/68b27b884491/cc9-3-e0402-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验